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ABSTRACT OF THE DISSERTATION

Measurements of Neutral Kaon Decays to Two

Electron-Positron Pairs

by Eva Halkiadakis

Dissertation Director: Sunil V. Somalwar

We observed 441 KL → e+e−e+e− events with a background of 4.2 events in the

KTeV/E799II experiment at Fermilab. We present here a measurement of the KL →
e+e−e+e− branching ratio (B), a study of CP symmetry and the first detailed study of

the e+e− invariant mass spectrum in this decay mode.

We used the e+e− mass spectrum in KL → e+e−e+e− to measure the KLγ
∗γ∗ form

factor which sheds light on the structure of KL → γ∗γ∗ transitions. The parameter αK∗

of Bergström, Massó and Singer [1] describes the relative strength of an intermediate

pseudoscalar decay amplitude and a vector meson decay amplitude. We measured

αeff
K∗ = −0.14± 0.16stat ± 0.15syst, which takes into account both the form factor and

radiative effects. This is the first form factor measurement using KL → e+e−e+e− .

We also measured B(KL → e+e−e+e− ) = (3.72± 0.18stat ± 0.23syst)× 10−8.

Using the the distribution of the angle between the planes of the e+e− pairs, we

measured the CP parameters βCP = −0.23 ± 0.09stat ± 0.02syst and γCP = −0.09 ±
0.09stat ± 0.02syst for Mee > 8MeV . The parameter βCP is an indicator of the CP

eigenstate of KL and γCP measures the amount of CP violation in the decay. We found

that the 90% CL limit on |γCP| is < 0.21. The CP measurements are based on a

restricted sample of 264 events, a factor of 10 more than the previous measurement.
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Chapter 1

Introduction

1.1 A Little Bit of History

The world of particle physics contains three discrete symmetries of Nature: charge

conjugation (C), space inversion or parity (P) and time reversal (T). One of the most

important principles of quantum field theory is the conservation of CPT, or the CPT

theorem [2]. In other words, in Nature all interactions are invariant under the combined

operation of C, P and T (in no particular order). It used to be thought that all

interactions under the operation of CP were also invariant, but this belief changed after

the neutral K-meson (kaon) was shown to violate CP symmetry.

The kaon, along with the π-meson (pion), was discovered in cosmic rays in 1947 [3],

and many consider their discoveries as the birth of particle physics. In 1957, Wu et al.

discovered parity violation in weak decays in the famous 60Co experiment [4], verifying

the β-decay predictions of Lee and Yang [5]. Then in 1964, the discovery of CP-violation

in neutral kaon decays redefined the nature of particle physics. Christenson, Cronin,

Fitch and Turley [6] discovered that the long-lived neutral kaon (KL), which commonly

decays to the CP conserving state of three pions, could also decay to two pions and

violate CP symmetry with a very small, yet non-zero, probability. This discovery

would forever make the kaon one of the most interesting and unique particles observed

in Nature.

1.2 Overview of the Neutral Kaon System

The neutral kaon system is described in great detail elsewhere [7, 8, 9, 10], so we present

a brief overview here.
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There are two neutral kaons, K0 and K̄0, and they are strange mesons. Their

valence quark content is

K0 = ds̄, (S = −1), (1.1)

K̄0 = d̄s, (S = +1)

where S is the strangeness eigenstate value.

K0 and K̄0 are not eigenstates of CP. However, when they are operated on by CP

we find that they are CP conjugates of each other:

CP |K0 > = |K̄0 >, (1.2)

CP |K̄0 > = |K0 > .

We can then define the eigenstates of CP, K1 and K2, as

|K1 > =
1√
2
( |K0 > + |K̄0 > ), (1.3)

|K2 > =
1√
2
( |K0 > − |K̄0 > ),

so that

CP |K1 > = + |K1 >, (CP = +1, even) (1.4)

CP |K2 > = − |K2 > (CP = −1, odd).

Prior to 1964, the CP-odd state K2 used to be identified as KL and the CP-even state

K1 used to be identified as KS .

As previously mentioned, the first observation of CP violation was evident in KL

decays to two pions, a CP-even state. This can be explained if we characterize the KL

as mostly the CP-odd state K2 with a small admixture of the CP-even state K1. Then

the short-lived neutral kaon, KS , is expected to become mostly the CP-even state K1

with a small admixture of the CP-odd state K2. In particular,

|KL > =
1√

1 + |ε|2 ( |K2 > + ε |K1 > ) (1.5)

=
1√

2 (1 + |ε|2) [ (1 + ε) |K0 > − (1− ε) |K̄0 >],
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|KS > =
1√

1 + |ε|2 ( |K1 > + ε |K2 > )

=
1√

2 (1 + |ε|2) [ (1 + ε) |K0 > + (1− ε) |K̄0 >],

where ε parametrizes the amount of CP asymmetry, or mixing of CP states. CP viola-

tion from this mixing of states is referred to as “indirect CP violation”. Therefore, ε is

a measure of the amount of indirect CP violation and is of the order ∼ 10−3.

Efforts have been made to measure the amount of “direct CP violation” in Nature.

For example, if the |K2 > state in KL were to directly decay to a CP-even state this

would indicate direct CP violation; this could also occur in the |KS > if the the |K1 >

state were to directly decay to a CP-odd state. The amount of direct CP violation is

parametrized by ε
′
/ε. It can be shown that

Γ(KL → π+π−)/Γ(KS → π+π−)
Γ(KL → π0π0)/Γ(KS → π0π0)

=
|η+−|2
|η00|2 ≈ 1 + 6Re(ε

′
/ε)

where Γ is the decay rate for the corresponding double pion decay and η is the ratio of

the CP violating to CP conserving decay amplitudes in the corresponding decay mode.

There has been a series of experiments designed to measure this double ratio precisely

in order to extract ε
′
/ε. The current world average is (2.1± 0.5)× 10−3 [10].

1.3 An Introduction to the KL → γ(∗)γ(∗) Family of Decays

The family of KL → γ(∗)γ(∗) decays may be the most interesting among all the radiative

decays of the long-lived neutral kaon 1. The rare decays KL → γγ, KL → e+e−γ,

KL → µ+µ−γ, KL → e+e−µ+µ−, KL → e+e−e+e−, and KL → µ+µ−µ+µ− share

an underlying two photon (real or virtual) vertex, KL → γ(∗)γ(∗). For example, the

rare decay KL → e+e−e+e− proceeds via a two virtual photon intermediate state,

KL → γ∗γ∗, with internal photon conversions to two e+e− pairs (see figure 1.1), whereas

the related decay KL → e+e−γ arises from one internal conversion, KL → γ∗γ. The

study of this family of rare decays is interesting in its own right. In addition, it is needed

to extract interesting physics parameters that contribute to other rare KL decays.

1The ∗ represents a virtual (off mass-shell) photon.
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Figure 1.1: Diagram of KL → γ∗γ∗ → e+e−e+e−.

The KL → γ(∗)γ(∗) transition involves long-distance and short-distance processes.

Electroweak interactions of quark and gluon fields in the Standard Model contribute

to short-distance physics and are directly calculable (see figure 1.2(a)). Long-distance

processes involve low energy non-perturbative strong-interactions with hadronic effects

(see figure 1.2(b)). These processes are difficult to calculate and are poorly understood.

We need to understand long-distance effects to be able to further examine the physics

of the short-distance processes.

An experimental measurement of the KLγ
∗γ∗ form factor is essential to understand

long distance contributions to other rare KL decays, in particular KL → µ+µ− [11, 12,

13, 14, 15]. The KL → µ+µ− branching ratio can be written as

B(KL → µ+µ−) = |ReA|2 + |ImA|2, (1.6)

where A is the decay amplitude for KL → µ+µ−. The absorptive term, |ImA|2, rep-
resents long-distance contributions with real photons (unitarity limit). The dispersive

term, |ReA|2, includes both short-distance and long-distance contributions. The short-

distance process is sensitive to the CKM matrix element Vtd and the long-distance pro-

cess includes the KLγ
∗γ∗ vertex. Figures 1.3 and 1.4 illustrate the short-distance and

long-distance contributions to KL → µ+µ−. There are several models that parametrize

the KLγ
∗γ∗ form factor and are discussed in section 1.6. This form factor has never

been experimentally measured. Therefore, experimental input is essential to determine

this form factor in order to extract Vtd. So far, the alternative has been to use the
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Figure 1.2: The Feynman diagrams for KL → γ(∗)γ(∗). (a) Short-distance contribution.
(b) Long-distance pole contribution.

KL → γγ∗ modes, such as KL → e+e−γ and KL → µ+µ−γ which occur at higher rates

than four-lepton final state modes, to measure the corresponding form factor. In this

thesis, we do not attempt to extract Vtd with the KLγ
∗γ∗ form factor measurement us-

ing KL → e+e−e+e− . Another related decay mode which may have a higher sensitivity

to the KLγ
∗γ∗ form factor and thus to Vtd is KL → e+e−µ+µ− [16, 17, 18, 19]. Un-

fortunately, KL → e+e−µ+µ− is highly suppressed, with a branching ratio of ∼ 10−9.

Additionally, the branching ratio for the decay mode K+ → π+νν̄ is very sensitive to

Vtd, however it is of the order ∼ 10−10 [20, 21, 22]. With the construction of future

high-precision kaon experiments perhaps we will one day measure Vtd.

In this thesis, we study the decay mode KL → e+e−e+e− and measure the KLγ
∗γ∗

form factor for the first time. In addition, we measure its branching fraction and search

for CP violation in theKLγ
∗γ∗ transition. Discovering CP violation inKL → e+e−e+e−

would be interesting since it would be a first in a purely leptonic decay mode. The

results presented in this thesis are independently published elsewhere [23].
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Figure 1.5: The Feynman diagrams for KL → e+e−e+e− .

1.4 Branching Ratio of KL → e+e−e+e−

1.4.1 QED Calculation

In KL → e+e−e+e− there are two pairs of identical particles in the final state. There

are two Feynman diagrams for this decay (shown in figure 1.5) plus the interference

between the two since we have particles of the same species. The QED calculation of

the decay rate has been carried out by Miyazaki and Takasugi neglecting CP violation

(which is a small effect), radiative corrections and the existence of a form factor [24].

Therefore, in this approximation KL is the odd CP eigenstate (CP = −1) K2. The five

independent variables chosen to parametrize the matrix element are:

x1
2 = (p+1 + p−1 )

2, (1.7)

x2
2 = (p+2 + p−2 )

2, (1.8)

y1
2 = | #p+1 − #p−1 |2/(E+

1 + E−
1 )

2, (1.9)

y2
2 = | #p+2 − #p−2 |2/(E+

2 + E−
2 )

2, (1.10)

cos(φ) = ( #p+1 × #p−1 ) · ( #p+2 × #p−2 )/| #p+1 × #p−1 | · | #p+2 × #p−2 |, (1.11)

where p±1,2 and E±
1,2 are the four momenta and the energies of the two e±, respectively.

The labels 1, 2 correspond to the two intermediate virtual photons in either of the

diagrams in figure 1.5. In addition, x1,2 are the invariant masses of the e+e− pairs (or
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of the virtual photons), y1,2 are measures of the energy partition and φ is the angle

between the planes of the two e+e− pairs.

The matrix element for the first diagram is

M1 =
2f
M

εµνρσ
(p+1 + p−1 )ν(p

+
2 + p−2 )σ

(p+1 + p−1 )2(p
+
2 + p−2 )2

u(p−1 )γ
µv(p+1 )u(p

−
2 )γ

ρv(p+2 ) (1.12)

where f is the momentum dependent form factor, M is the kaon invariant mass, εµνρσ

is the antisymmetric tensor, u and v are four-component column-spinors and u and v

are four-component row-spinors that represent the momentum-space wave functions of

the final state particles and the γ’s are the Dirac matrices. A similar expression can be

written for the matrix element for the cross diagram.

The ratio of decay rates, ρ, is written as

ρ = Γ/Γ(K2 → γγ) =
∫

|M|2dx1dx2dy1dy2dφ

=
∫

|M1 +M2|2dx1dx2dy1dy2dφ

=
∫
(|M1|2 + |M2|2 +M1M∗

2 +M∗
1M2)dx1dx2dy1dy2dφ

= Γ1 + Γ2 + Γ12, (1.13)

where Γ is the total decay rate and M is the total matrix element for K2 → e+e−e+e−.

The contributions of the diagrams, including interference, are labeled by 1 and 2. Since

the two diagrams are symmetric, we have Γ1 = Γ2 with

Γ1/Γ(K2 → γγ) =
1
2π

(
α

4π

)2 ∫ M−2m

2m
dx1

∫ M−x1

2m
dx2

∫ η1

−η1

dy1

∫ η2

−η2

dy2

∫ 2π

0
dφ

∣∣∣∣∣f(x
2
1, x

2
2)

f(0, 0)

∣∣∣∣∣
[
1− 2(x21 + x22)

M2
+

(x21 − x22)
2

M4

]3/2

{[
1

x1x2
+

(
y21
x1

+
4m2

x31

)(
y22
x2

+
4m2

x32

)]
sin2 φ

+

[
y21 + y22
x1x2

+
4m2(x21 + x22)

x31x
3
2

]
cos2 φ

}
, (1.14)

where m is the electron invariant mass and η1,2 = [1− (2m/x1,2)2]1/2. The interference

term, Γ12, is long and complicated and can be found in [24]. If the interference term is
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neglected ρ reduces to the model of Kroll and Wada [25] where the process is regarded

as nearly independent double internal photon conversions.

The QED prediction of Miyazaki and Takasugi [24], including the interference term,

gives

Γ(K2 → e+e−e+e−)
Γ(K2 → γγ)

= 6.22× 10−5. (1.15)

This calculation neglects CP violation, radiative corrections and the existence of a form

factor, which are not large effects.

1.4.2 Other Predictions

The QED calculation of Miyazaki and Takasugi described above will also be referred to

as the Phase Space model since the decay rate is determined only by the phase space

and a momentum dependent form factor is neglected. However, since KL → e+e−e+e−

is dominated by long distance interactions which characterize the physics at the KLγ
∗γ∗

vertex, the Phase Space model alone is not enough to describe how kaons decay to two

lepton pairs. In addition to the form factor being neglected in this model, CP violation

is also ignored since it is a small effect.

The model of Uy [26, 27] is an extension of the Phase Space model and considers

both the long-lived and short-lived kaon decays KL → γ∗γ∗ and KS → γ∗γ∗. In this

case, CP violation due to mixing is included and both CP-violating and CP-conserving

form factors are determined for KL → γ∗γ∗ and KS → γ∗γ∗. Measurements of
dΓKL

dφ

and dΓKS
dφ , the angular decay distributions of KL and KS decaying to two lepton pairs

(where φ is the angle between the planes of the two lepton pairs), can be used to

determine these form factors. However, these calculations are performed only for the

decay to lepton pairs of different species, KL → e+e−µ+µ−. The calculations involving

KL → e+e−e+e− and KL → µ+µ−µ+µ− are difficult due to the exchange pairing of

the leptons. Hopefully, these calculations will be carried out in the near future.

In addition to the Phase Space model, the KL → e+e−e+e− decay rate has been

calculated using the Vector Meson Dominance model (VMD) of electromagnetic cou-

plings by Quigg and Jackson [28]. In this model it is assumed that there are no direct
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Figure 1.6: The Vector Meson Dominance Model (VMD) diagram for a pseudoscalar
meson (P) decaying to γ∗γ∗ (or γγ) via intermediate vector mesons.

Pγ(∗)γ(∗) or PV γ(∗) couplings 2. Instead, all photon couplings come from intermediate

vector mesons, as in figure 1.6. The form factor in the VMD model for the P → γ∗γ∗

transitions (as in KL → γ∗γ∗ → e+e−e+e−) is proportional to

1
(m2

1 + q21)(m
2
2 + q22)

(1.16)

where q1,2 are the virtual photon invariant masses (Me+e− in this case) and m1,2 are

the vector meson invariant masses. In [28] the ω resonance invariant mass is used for

m1,2 to obtain

Γ(K2 → e+e−e+e−)
Γ(K2 → γγ)

= 6.3× 10−5. (1.17)

Just as in the Phase Space model, CP violation and radiative corrections have been

neglected. In addition, VMD neglects the interference term. For comparison, the Phase

Space model prediction without the interference term is [24]

Γ(K2 → e+e−e+e−)
Γ(K2 → γγ)

= 6.26× 10−5, (1.18)

which is not very different from the VMD model prediction.

Long-distance contributions, or non-pertubative effects among mesons, dominate

the decay KL → e+e−e+e− . However, as discussed in section 1.3, these effects are

2Here, P is a pseudoscalar meson (such as the kaon) and V is a vector meson (such as the ρ meson).



11

not currently calculable. Fortunately, there are other phenomenological models that

attempt to study long-distance effects, such as chiral perturbation theory (χPT ). This

theory uses an effective lagrangian that obeys chiral symmetry, an approximate sym-

metry of the QCD lagrangian. The general method is to work to an order pn in the

(low) energy expansion (or extension) of the basic lagrangian (order p2). The order

corresponds to the number of derivatives and external fields that occur in the operators

in the lagrangian. For example, the expansion of the basic lagrangian of order p2, L2,

may include a lagrangian with all contributions of order p4, L4,to obtain the effective

lagrangian,Leff . Recently, Zhang and Goity have made advances in calculating the

decay rate of KL → e+e−e+e− using chiral perturbation theory [29]. These predictions

include all contributions to order p6 in χPT and are:

Γ(K2 → e+e−e+e−)
Γ(K2 → γγ)

= 6.26× 10−5 (no form factor) (1.19)

Γ(K2 → e+e−e+e−)
Γ(K2 → γγ)

= 6.50× 10−5 (with form factor, scenario 1)

Γ(K2 → e+e−e+e−)
Γ(K2 → γγ)

= 6.48× 10−5 (with form factor, scenario 2).

The two scenarios result from different coefficients in the form factors which were ob-

tained by fitting the data in [30, 31, 32]. Again, CP violation and radiative corrections

have been neglected but the interference term is included.

A summary of the current predictions for the ratio of decay rates Γ(KL→e+e−e+e−)
Γ(KL→γγ)

is displayed in table 1.1. For convenience, the predictions for the branching ratio or

fraction B(KL → e+e−e+e−) = Γ(KL→e+e−e+e−)
Γtotal(KL→anything) are summarized in table 1.2, using

the current measurement of the B(KL → γγ) [10] which is the source of the uncertainties

in this table.

We see that the differences between Phase Space, VMD and χPT without any form

factor are small. Currently, the branching ratio of KL → e+e−e+e− is measured to

±0.8×10−8 [10]. To test if Nature prefers one of these models, a more precise measure-

ment of the branching ratio is necessary. For example, in order to distinguish between

Phase Space and χPT with a form factor, we need a branching ratio measurement that

is at least five times more sensitive than the current world average.
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Table 1.1: Predictions for the ratio of decay rates Γ(KL→e+e−e+e−)
Γ(KL→γγ) . All models neglect

CP violation and radiative effects. The Phase Space model also neglects the form factor.
The VMD model ignores the interference term.

QED (Phase Space) [24] VMD [28] χPT [29]
6.22× 10−5 (no FF) 6.3× 10−5 (no interf.) 6.26× 10−5 (no FF)

6.50× 10−5 (with FF)
6.48× 10−5 (with FF)

Table 1.2: Predictions for B(KL → e+e−e+e−) = Γ(KL→e+e−e+e−)
Γtotal(KL→anything) . Each element in

this table has an uncertainty of 2.6% due to the uncertainty in the current measure-
ment of the B(KL → γγ) [10]. All models neglect CP violation and radiative effects.
The Phase Space model also neglects the form factor. The VMD model ignores the
interference term.

QED (Phase Space) [24] VMD [28] χPT [29]
3.64× 10−8 (no FF) 3.7× 10−8 (no interf.) 3.67× 10−8 (no FF)

3.81× 10−8 (with FF)
3.80× 10−8 (with FF)

Currently, all models forKL → e+e−e+e− neglect radiative effects. Radiative effects

introduce complications in any process that has charged particles in the final state.

This is particularly true for KL → e+e−e+e− , in which all four final state particles can

radiate photons, which could have a significant effect on the tree-level process. However,

an exact QED calculation of the radiative corrections does not exist for this decay

mode. For the purposes of our measurement, we implement approximate corrections as

described later in chapter 5.

1.4.3 Previous Measurements

The first direct observation of KL → e+e−e+e− was in the CERN experiment NA31

[33, 34] with two candidate events. The branching ratio was measured to be (4± 3)×
10−8. The same experiment later found 6 more events giving a total of 8 events with a

branching ratio of (10.4± 3.7stat ± 1.1syst)× 10−8 [33, 34].
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The Brookhaven experiment B845 also observed 6 events and measured the branch-

ing ratio to be (3.07±1.25stat ±0.26syst)×10−8 [35]. The KEK experiment has also ob-

served 18 events (Me+e− > 470MeV/c2) with a branching ratio of (6±2stat±1syst)×10−8

and 6 events (Me+e− > 480MeV/c2) with a branching ratio of (7± 3stat ± 2syst)× 10−8

[36, 37].

The previous most significant measurement of KL → e+e−e+e− came from the

KTeV predecessor experiment E799-I with 27 events observed [38, 19]. The branching

ratio was measured to be (3.96 ± 0.78 ± 0.32) × 10−8. In this thesis, we present an

improved measurement of the KL → e+e−e+e− branching ratio.

The PDG world average of these results is [10]

Γ(KL → e+e−e+e−)
Γtotal(KL → anything)

= (4.1± 0.8)× 10−8. (1.20)

1.5 CP Studies with KL → e+e−e+e−

1.5.1 How to Study CP Symmetry in KL → e+e−e+e−

Historically, the decay π0 → e+e−e+e− was used to find the intrinsic parity of the

neutral pion. Over 40 years ago, in 1959, Plano et al. experimentally determined the

π0 to have negative parity [39, 40]; this, in turn, means that the π0 is a pseudoscalar

meson. It is the relative polarization of the photons in the decay π0 → γγ that elucidate

the pion parity. In the double Dalitz decay of the π0 each of the photons internally

convert to an e+e− pair, and the angle between the planes that the e+e− pairs form

allows one to show that the π0 is a pseudoscalar meson. A similar test can be conducted

for the neutral kaon.

We search for CP violation in KL → e+e−e+e− by studying φ, the angle between

the planes of the two e+e− pairs. The Kroll-Wada formula gives [25]

dΓ(K1,2 → e+e−e+e−)
dφ

∝ (1 +B cos(2φ)), (1.21)

where K1(K2) is the even(odd) eigenstate of CP and the constant B is +0.20 for K1

and −0.20 for K2.
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Introduction of CP violation in mixing results in complications since KL is not

a pure CP eigenstate but a mixture of the two CP eigenstates, K1 and K2, KL =

(K2 + εK1)/
√
1 + |ε|2. More generally,

dΓ(KL → e+e−e+e−)
dφ

∝ (1 + βCP cos(2φ) + γCP sin(2φ)) (1.22)

The parameters βCP and γCP are defined below. The sin(2φ) term results from the

interference between the CP-odd and CP-even final states.

Assuming CP-violation only due to mixing ε, we have (A1,2 are the decay amplitudes

of K1,2 → e+e−e+e−)

dΓ(KL → e+e−e+e−)
dφ

∝ |εA1 +A2|2 (1.23)

= |εA1|2 + |A2|2 + 2Re(εA1A
∗
2)

= |εA1|2 + |A2|2 + 2Re(εr)|A2|2

where we define r = A1/A2, the ratio of the two decay amplitudes and is estimated

to be of order unity 3 [19]. We assume that the interference term is proportional to

sin(2φ), as was done for the π0 decay in [40], dΓ(KL→e+e−e+e−)
dφ

Inter
= 2Re(εr)|A2|2 ∝

2Re(εr) sin(2φ).

Substituting the Kroll-Wada formula for |A1,2|2 we obtain

dΓ(KL → e+e−e+e−)
dφ

(1.24)

= |ε|2a1[1 + b cos(2φ)] + a2[1− b cos(2φ)] + c[2Re(εr) sin(2φ)]

= (|ε|2a1 + a2)

{
1−

[
1− |ε|2a1/a2
1 + |ε|2a1/a2

]
b cos(2φ) +

c

a2

[
2Re(εr)

(1 + |ε|2a1/a2) sin(2φ)
]}

where a1/a2 ≈ r2 (which is approximately unity), b ≡ |B| = 0.20 (as in equation 1.21)

and c
a2

≡ C is an unknown constant that depends on the extent and nature of CP

violation. There are no theoretical predictions for C.

Finally we have

dΓ(KL → e+e−e+e−)
dφ

∝ [1− 1− |εr|2
1 + |εr|2B cos(2φ) +

2Re(εr)
1 + |εr|2C sin(2φ)] (1.25)

3In reality, the ratio r is a function of phase space.
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with

βCP = −1− |εr|2
1 + |εr|2B ≈ B , γCP =

2Re(εr)
1 + |εr|2C ≈ 2Re(εr)C, (1.26)

which gives us equation 1.22. The cosine term in equation 1.25 above is similar to

the Kroll-Wada formula in 1.21. The sine term in equation 1.25 is proportional to the

strength of CP violation, as can be seen in 1.26. We determine the values of βCP and

γCP from the distribution of the angle φ in the KL → e+e−e+e− events.

1.5.2 Previous Measurements

The CERN experiment NA31 [33, 34] performed the first CP test in KL → e+e−e+e−.

They used a likelihood test and found their data favoring the CP-odd state (CP = −1).
The test statistic using a likelihood ratio was

L(CP = −1)
L(CP = +1)

=
N∏

i=1

1− αi cos(2φi)
1 + αi cos(2φi)

(1.27)

where N is the total number of observed events, φ is the angle between the planes of

the two e+e− pairs and α is given by [25]

α =
y21 + y22 − 1− y21y

2
2 +

4m2

x2
1
(1− y22) +

4m2

x2
2
(1− y21)− (4m2)2

x2
1x2

2

1 + y21y
2
2 + y21 + y22 +

4m2

x2
1
(1 + y22) +

4m2

x2
2
(1 + y21) +

(4m2)2

x2
1x2

2

(1.28)

where x1,2, y1,2 and m are defined in section 1.4.1 above.

The most recent measurement from the KTeV predecessor experiment E799-I [38, 19]

fit the φ distribution to equation 1.21 to measure βCP only. A CP study, as described

above, was also conducted with these events and observed that the data somewhat

favored the CP = −1 hypothesis. The parameter in front of the cos(2φ) term in the

Kroll-Wada formula 1.21 was measured for the first time to be βCP = −0.22 ± 0.30,

in agreement with the theoretical expectation of 0.20 (which neglects CP violation,

radiative corrections and the existence of a form factor) [25]. Using equation 1.26, |εr|2

was measured to be −0.036+2.46
−0.39, consistent with zero. Also, assuming only direct CP

violation, this equation becomes

β = −1− |ε′γ∗γ∗ |2
1 + |ε′γ∗γ∗ |2B (1.29)
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where ε
′
γ∗γ∗ is the ratio between the CP violating and the CP conserving amplitudes of

KL → e+e−e+e− . An upper limit of |ε′γ∗γ∗ | < 2.2 was set at the 90% confidence level.

In this thesis, we present an improved measurement of the CP parameter βCP. We

also place a limit on the CP parameter γCP (see equations 1.22 and 1.26) for the first

time.

1.6 Form Factor Models

The KL → e+e−e+e− form factor reveals the internal structure of the long lived neutral

kaon and information about the KL → γ∗γ∗ vertex. In this thesis, we measure the

KLγ
∗γ∗ form factor for the first time. We present measurements of the form factor

parameters αT aylor, αK∗ and αDIP (described below) using the form factor sensitive

Mee distribution.

The form factor can be parametrized very simply using the linear form (as a first

term in the Taylor series):

f(x) = 1 + αT aylor · x, (1.30)

where x = Mee
2/MK

2. In KL → e+e−e+e− , since there are two internal pair produc-

tions of e+e− pairs we use the following factorized expression for the form factor:

F (x1, x2) = f(x1) · f(x2), (1.31)

where f(x) is given by equation 1.30 and x1 = Mee1
2/MK

2 and x2 = Mee2
2/MK

2 (x1

and x2 are, on average, << 1). Finally we have for the KL → γ∗γ∗ form factor

f(x1, x2) ≈ 1 + αT aylor(x1 + x2). (1.32)

The parametrization of a related decay, KL → e+e−γ, which probes the KL → γγ∗

form factor can also be used for the KL → γ∗γ∗ form factor. This form factor has

been parametrized by Bergström, Massó, and Singer (BMS) and is an extension of

the VMD model [1, 13, 14]. The BMS model includes standard VMD long-distance

pole contributions as shown in figure 1.2(b) in addition to contributions from a K∗Kγ
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coupling with K∗ → ρ, ω, φ transitions as shown in figure 1.7. The BMS model form

factor expression is:

f(x) =
1

1− x(m2
K/m2

ρ)
+

CαK∗

1− x(m2
K/m2

K∗)

[
4
3
− 1

1− x(m2
K/m2

ρ)

− 1
9(1− x(m2

K/m2
ω))

− 2
9(1− x(m2

K/m2
φ))

]
(1.33)

whereMK , Mρ, MK∗ , Mω andMφ are the invariant masses of the corresponding mesons.

The parameter αK∗ describes the relative strength of an intermediate pseudoscalar

decay amplitude and a vector meson decay amplitude. The first term in this form factor

corresponds to a pseudoscalar-pseudoscalar transitionKL → π, η, η
′ → γγ∗. The second

term corresponds to a vector-vector transition with KL → K∗γ and K∗ → ρ, ω, φ → γ∗.

The constant C is determined using various coupling constants [32, 41, 10]:

GNL = 1.1× 10−5/mp
2

f2
K∗Kγ =

96πΓ(K∗ → K0γ)m3
K∗

(m2
K∗ −m2

K)3

f2
ρ =

4πα2
EMmρ

3Γ(ρ → e+e−)
fK∗ =

mK∗

mρ
fρ

f2
Kγγ =

64πΓ(KL → γγ)
m3

K

C =
√
8παEMGNLfK∗Kγ

m2
ρ

fK∗f2
ρfKγγ

= 2.3 (1.34)

where GNL is the coupling strength of theK∗ → ρ, ω, φ transition (and is approximately

equal to the Fermi constant), fK∗Kγ is the coupling of the K∗ → K0γ transition and

fKγγ is the coupling of the KL → γγ transition. In addition, fρ and fK∗ are the

coupling constants of the respective mesons, mp is the proton invariant mass and αEM

is the fine structure constant.

Finally, substituting the values of the coupling constants and meson invariant masses

we have the simplified expression [32, 10]:
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Figure 1.7: Long-distance pole diagram with a vector-vector transition. The diagram
shows a K∗Kγ coupling with a K∗ → ρ, ω, φ transition.

f(x) =
1

1− 0.418x
+

2.3αK∗

1− 0.308x

[
4
3
− 1

1− 0.418x

− 1
9(1− 0.405x)

− 2
9(1− 0.238x)

]
. (1.35)

Again, we use a factorized expression for the KL → γ∗γ∗ form factor as in equation 1.31.

The BMS model predicts |αK∗| = 0.2 − 0.3. Figure 1.8 shows the form factor as a

function of x for different values of αK∗ . It is interesting to note that αK∗ equal to zero

does not correspond to a pointlike form factor (f(x) = 1). Instead, αK∗ = 0 reduces

the form factor expression to one similar to the VMD model (see equation 1.16). In

addition, since our data exists only for small x, we use a first order Taylor expansion to

find that αK∗ � 0.3 approximates a pointlike form factor. One can easily determine the

approximate relation αT aylor ≈ 0.42 − 1.2αK∗ . The parameter αK∗ has been recently

measured to be−0.36±0.06stat±0.02syst [42] for KL → e+e−γ. The PDG world average

for αK∗ is currently −0.33±0.05, for KL → e+e−γ. Other recent measurements of αK∗

come from the decays KL → e+e−γγ, 0.01± 0.12stat ± 0.03syst [43], and KL → µ+µ−γ,

−0.163+0.026
−0.027 [41].

There also exists the form factor parametrization of D’Ambrosio, Isidori and Portolés

(DIP) [15] which is relatively model independent. The form factor expression from this
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Figure 1.8: The form factor as a function of x for different values of αK∗. Note that
αK∗ equal to zero is not a pointlike form factor (f(x) = 1). Also note that αK∗ � 0.3
approximates a pointlike form factor, by a first order Taylor expansion, in the region
where our data exists. Also, αK∗ � 0.25 is found empirically to approximate a pointlike
form factor. (Pointlike form factor is the straight line.)
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model is:

f(q12, q22) = 1 + αDIP

[
q1

2

q12 −mρ
2
+

q2
2

q22 −mρ
2

]
+ βDIP

q1
2q2

2

(q12 −mρ
2)(q22 −mρ

2)

= 1 + αDIP

[
x1

x1 − 2.4
+

x2
x2 − 2.4

]
+ βDIP

x1x2
(x1 − 2.4)(x2 − 2.4)

. (1.36)

where q = Mee, mρ is the ρ invariant mass [10] and αDIP , βDIP are arbitrary real

parameters. Using a factorization model [15], the expectations for αDIP and βDIP are

-1.22 and 1.43, respectively, for a ρ form factor. In KL → e+e−e+e− , only the first

order term (αDIP ) is relevant. Due to the dominance of low Mee, this decay mode is not

as sensitive to the second order term (βDIP ) as would be the decay KL → e+e−µ+µ− .

Neglecting the second order term we get the relation αDIP = −1+2.8 αK∗ , where αK∗ is

the BMS parameter described above, by Taylor expansion of equation 1.36. In addition,

αT aylor ≈ −αDIP /2.4. Also note that when αDIP = 0 (and βDIP = 0), the DIP

parametrization reduces to a flat or pointlike form factor. For reference, αDIP obtained

from KL → µ+µ−γ is −1.55± 0.09 [41], the first measurement of this parameter.

1.7 Thesis Overview

We have discussed the importance of studying the decay mode KL → e+e−e+e− . This

thesis contains several measurements using one of the rarest decay channels of the long-

lived neutral kaon. We study the KL → e+e−e+e− and measure its decay rate more

precisely than ever before. We also place limits on CP violation in this decay and do

this by fitting φ distribution to equation 1.22 to extract the CP parameters βCP and

γCP. This thesis contains the first limit on the parameter γCP. In addition, we measure

the KLγ
∗γ∗ form factor for the first time. We measure the parameters of various form

factor models (αK∗ , αDIP and αT aylor) using the Mee distribution, the distribution that

is most sensitive to the form factor.

In chapter 2, we describe the experimental setup, the neutral kaon beam and the

specifics of the detector elements. We then continue by describing the event selection

and reconstruction in chapters 3 and 4. In chapter 5, the details of the Monte Carlo

simulation of the detector are described. In chapters 6 and 7, the candidate signal and
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normalization mode event selections are described. The form factor analysis specifics

are in chapter 8. The details of the branching ratio analysis are in chapter 9. The CP

analysis using the angular distribution is in chapter 10. Finally we conclude with a

summary and short discussion of all the results in chapter 11.
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Chapter 2

The KTeV Experiment

The KTeV (Kaons at the Tevatron) detector dealt with two kinds of fixed-target kaon

experiments. One type of experiment was a high precision experiment designed to

search for direct CP violation by measuring the ratio of parameters ε
′

ε (E832). Here ε
′

is the parameter for direct CP violation and ε is the parameter for indirect CP violation

(or CP violation from K0 and K̄0 mixing). The other kind of kaon experiment dealt

with high-sensitivity rare kaon decays (E799-II). This thesis is based on data collected

from the latter experiment.

The KTeV experiment ran in the NM (Neutrino Muon) beamline at Fermilab. A

schematic of the fixed-target area at Fermilab is shown in figure 2.1 [44], where one can

see the location of the KTeV detector hall.

The E799-II data were collected during two periods in 1997. The first period began

in January and ended in March and is referred to as the “winter” run in this thesis.

The second period began in August and ended in September and is referred to as the

“summer” run in this thesis.

In this chapter, I describe the beamline and detector during E799-II conditions of

KTeV running. Additional information can be found in [41, 43, 44, 45, 46, 47, 48, 49].

2.1 The KTeV Beam

The E799-II experiment required two pure, high intensity beams of neutral kaons. These

beams were produced by a primary proton beam striking a BeO target. This section

describes the details of the beam production.
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Figure 2.1: Fermilab fixed-target area schematic. The KTeV experiment ran in the NM
(Neutrino Muon) beamline.

2.1.1 Primary Proton Beam

The Fermilab Tevatron provided 800 GeV/c protons to the fixed-target areas. During

each one minute cycle, there was a “spill” period of 20 seconds throughout which the

protons arrived followed by 40 seconds of no protons. Within each spill, there was a 53

MHz radio frequency (RF) structure due to the accelerator. The protons arrived in 1-2

ns wide “buckets” every 19 ns.

This primary beam of protons was incident on a BeO target. The center of the

target defined the origin of the KTeV coordinate system. The direction along the beam

(or “north”) is defined as the positive Z-axis, with the X-axis horizontal and transverse

to the beam (+X is “west”) and the Y-axis is the vertical. The target was 30 cm long

(or 1.1 interaction lengths) and the cross-section of the target was 3.0 mm × 3.0 mm.

The primary proton beam was nearly horizontal; the targeting angle was chosen to be

4.8 mrad in the vertical plane (aimed downward) to reduce the neutron flux (which

peaks at 0 mrad) and to maintain a high neutral kaon flux. The size of the beam at the

target was typically 250µm in the horizontal and vertical. During the “winter” running

conditions the target received about 5 × 1012 protons per spill and about 3.5 × 1012

protons per spill during “summer” running conditions. The target was located in the

NM2 beamline enclosure (a.k.a. KTeV Target Hall) and is shown in figure 2.2.
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Figure 2.2: Schematic plan view of the KTeV beam elements in the KTeV Target Hall
(NM2 enclosure).

2.1.2 Secondary KL Beams

Two neutral KL beams were used in E799-II [50]. The two beams were necessary when

running under E832 conditions in order to precisely measure direct CP violation in the

ratio of parameters ε
′

ε [51, 48]. Having two beams was not vital to the measurements

of rare KL decays.

The production of the two beams began when the primary proton beam struck

the BeO target. A series of magnets swept away unwanted charged particles, while a

series of collimators aligned the beams into position. These elements are all shown in

figure 2.2. Only 2 meters after the proton beam stuck the target, the first magnet,

referred to as the “target sweeper”, swept away charged particles and deflected them

downward into a water-cooled copper beam dump. At a distance of Z = 14 meters,

another magnet called “µ-sweep1” swept charged particles (such as muons) away from

the beam. This was followed by a lead absorber, at Z = 18.5 meters, whose primary

function was to remove photons since they would convert into e+e− pairs which were
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swept away by other magnets further downstream.

The two beams were fist defined by the “primary collimator” at Z = 20 meters which

was made of steel and brass. Its two square holes, whose centers were separated by 1.6

mrad, shaped the two beams. At Z = 22 meters another magnet, called “µ-sweep2”,

swept any remaining charged particles, such as scattered muons and particles that may

have been produced by interactions in material upstream. The “spin rotator dipole”

magnet, located at Z = 30 meters, was used to change the polarization of neutral

hyperons in the beam (Ξ0, Λ0) for rare hyperon decay analyses in KTeV [47]. This

magnet had no effect on the neutral kaons since they are spinless. The “slab collimator”,

located at Z = 40 meters in between the two beams, is made of stainless steel and

prevented particles from crossing over to the neighboring beam. This collimator was

removed during the “summer” data taking period. This was followed by the “jaw

collimators” which were used for further shaping of the beams. During calibration data

taking periods the iron “beamstop” was put in at Z = 50 meters, which provided beams

of muons.

Further upstream in the NM3 enclosure, at Z = 85 meters the “defining collimator”,

composed of tungsten, provided the beams with their final dimensions. During “winter”

data taking conditions the two beams were (4.4 × 4.4) cm2 and during the “summer”

they were (5.2×5.2)cm2. The “final sweeper” magnet was located at Z = 90 meters and

removed any lingering charged particles in the neutral beam from upstream interactions

and decays.

This brings us to the beginning of the KTeV decay region. The two beams, by this

point, were predominantly composed of neutrons and KL. The ratio of neutrons to

kaons was approximately 3 : 1 and the total neutral hadron rate was 25−50 MHz. The

neutral beams were also composed of very small levels of KS , Λ and Ξ particles.

2.2 The KTeV Detector

This section describes the details of the KTeV detector elements during E799-II running

conditions. Figure 2.3 shows a schematic plan (or top) view of the entire detector. The
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principal elements are labeled and their distance from the target (Z) in meters is labeled.

2.2.1 Decay Volume

The KL decay region began at Z = 93 meters and ended at Z = 159 meters. The

decay region was held under vacuum at a pressure of 1× 10−6 torr 1. The decay tank

was made of cylindrical steel pipes of increasing size, ranging from 15 cm to 1.8 meters

in diameter. The end of the decay volume was marked by a circular vacuum window

(radius r = 0.9 meters) composed of kevlar and laminated with mylar. The vacuum

window was 0.0015 radiation lengths in the Z-direction.

The vacuum window was followed by a helium bag secured by a mylar window. This

was followed by a 10 cm air gap, in which a safety shutter was lowered during times

the detector needed to be accessed.

Located in the vacuum decay region, there was a set of five photon veto detectors

called “Ring Counters” (RC) [52]. The RC’s provided hermetic detection of particles

escaping the detector (in particular, photons). These detectors had an overall round

shape with an inner square aperture, which allowed the neutral KL beams to pass

through without interacting with any material (see figure 2.4). The counters were

made of 24 lead-scintillator layers which were 16 radiation lengths in Z. The first 16

layers were each 0.5 of a radiation length and the final eight layers were 1.0 radiation

length each. They were also azimuthally divided into 16 modules. Each module was

connected to fiber optic light guides, whose scintillation light was fed to photomultiplier

tubes (PMT). These signals were digitized and discriminated and sent to the trigger

system. The RC positions and dimensions are shown in table 2.1.

2.2.2 Spectrometer

The spectrometer was used to measure the trajectory and the momentum (and thus

the charge) of the charged particles. It was also used to find the vertex of the decay

particles.

1The vacuum region began at Z = 50 meters.
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Figure 2.4: Cross-sectional view of a Ring Counter. The RC positions and dimensions
are shown in table 2.1.

Table 2.1: Positions and Dimensions of the Ring Counters.

Ring Counter Z position(m) Outer radius (m) X(m) × Y(m)
RC6 132.6 1.00 0.84× 0.84
RC7 138.6 1.00 0.84× 0.84
RC8 146.6 1.44 1.18× 1.18
RC9 152.6 1.44 1.18× 1.18
RC10 158.6 1.44 1.18× 1.18

Drift Chambers and Magnet

The spectrometer consisted of four drift chambers (DC), a magnet and plastic bags

filled with helium. The DC frames were used in previous experiments [53, 54, 55].

Figure 2.5 [43] shows the setup of the spectrometer elements. The DC’s downstream

(DC3 and DC4) were larger than the ones upstream (DC1 and DC2) and their cross-

sections ranged from 1.3m× 1.3m to 1.9m× 1.9m. This allowed a higher acceptance of

tracks with large bending angles. The magnet was a dipole magnet with a transverse

momentum kick of around 200 MeV/c in the +X direction and was located between DC2

and DC3. The magnetic field was 2000 Gauss in the vertical direction so that tracks
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Figure 2.5: The plan view of the spectrometer elements.
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Table 2.2: Positions and Dimensions of the Spectrometer elements.

Spec. Element Z position(m) X (m) × Y (m)
DC1 159.4 1.30× 1.30
DC2 165.6 1.64× 1.44

Magnet 170.0 2.90× 2.00
DC3 174.6 1.74× 1.64
DC4 180.5 1.90× 1.90

bend in the X-direction. The polarity of the magnetic field was periodically flipped to

reduce possible systematics. The helium bags were located in between the chambers to

reduce multiple scattering of particles, photon conversions and beam interactions. The

positions and dimensions of the spectrometer elements are shown in table 2.2.

The DC’s were designed to capture position information of the tracks in both the X

and Y directions. Each chamber consisted of two plane pairs. The two upstream planes

were made of wires parallel to the Y-axis (X, X
′
) and the two downstream planes were

made of wires parallel to the X-axis (Y , Y
′
). The four planes were defined by the sense

(or anode) wires which were 1-mil gold-plated tungsten. The field shaping (or cathode)

wires were made of 4-mil gold-plated aluminum and formed a hexagon around the sense

wires (a drift cell). The sense wires within a plane were separated by 12.7 mm, which

also defined the size of the cell. Adjacent sense planes were offset by 6.35mm to reduce

the ambiguity of the measurement of the particle position. There were also two planes

of window guard wires located at the upstream and downstream ends of each chamber.

These wires were made of 4-mil gold-plated aluminum. The configuration of the planes

and wires within a DC is shown in figure 2.6.

Each DC was filled with 49.75% argon and 49.75% ethane by volume, with 0.5%

isopropyl alcohol during the winter run and 1.0% alcohol during the summer run. The

alcohol was added to help prevent chamber aging. When a charged particle traveled

through a chamber, ion pairs were deposited into the argon-ethane mixture. The freed

electrons drifted to the sense wires and the ions drifted to the field wires. The drift

speed was roughly constant at 50µm/nsec, with average drift times of less than 200 ns.

The voltage on the field and window wires were 2450V-2600V with respect to the sense
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wires.

Using electronics mounted to the DC’s, the sense wire signals were amplified and

discriminated. The signals were then digitized using time-to-digital converters (TDC)

and were sent to the triggering system. The TDC times were precise to about 0.5 ns.

The drift times were converted to drift distances which resulted in obtaining the posi-

tions of the tracks. These time to distance conversion maps were calibrated throughout

the running period. The sum of two drift distances (SOD) of adjacent sense wires were

calculated for a pair of hits (or signal) for one track. The SOD should be equal to the

offset of 6.35 mm. The SOD distributions reveal that the position resolution from the

DC’s is around 100µm.

The momentum resolution of the spectrometer was measured [45] to be

σ(p)
p

= 0.38% + 0.016%× p (2.1)

where p is the momentum of a track measured in GeV/c. The constant term is due to

multiple scattering. The linear term reflects that the resolution deteriorates for higher

track momenta due to the finite position resolution of the spectrometer.

Spectrometer Anti

The spectrometer anti (SA) [56, 57] consisted of three photon veto counters, much like

the RC’s described in section 2.2.1. SA2, SA3 and SA4 were located slightly upstream of

DC2, DC3 and DC4, respectively. They were rectangular counters and were composed

of 32 layers of a lead-scintillator sandwich. Each layer was 0.5 radiation lengths resulting

in a total of 16 radiation lengths. There were a total of 28 modules, each connected

to fiber optic light guides, whose scintillation light was fed to PMT’s. These signals

were digitized and discriminated and sent to the trigger system. The SA positions and

dimensions are shown in table 2.3 and a sketch of an SA is shown in figure 2.7.

2.2.3 Calorimeter

The electromagnetic calorimeter was used to precisely measure the energies of e±’s and

γ’s. The positions of particles interacting with the calorimeter were also recorded and



32

12.7mm

(0.1mm gold-plated aluminum)
Window Guard Wire

Sense Wire
(0.025mm gold-plated tungsten)

(0.1mm gold-plated aluminum)
Field Wire

Chamber window

Chamber window

Beam Direction

t1, x1

t2, x2

Y-View

X-View

Figure 2.6: The configuration of the planes and wires within a DC. The beam direction
is shown by the long arrow. The planes are defined by the sense wires, with the field
wire forming a hexagon around the sense wires.
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Figure 2.7: Cross-sectional view of a Spectrometer Anti. The SA positions and dimen-
sions are shown in table 2.3.

Table 2.3: Positions and Dimensions of the Spectrometer Anti.

SA Z position(m) Outer X(m) × Y(m) Inner X(m) × Y(m)
SA2 165.1 2.50× 2.50 1.54× 1.37
SA3 174.0 3.00× 2.40 1.69× 1.60
SA4 180.0 2.37× 2.37 1.75× 1.75

for charged particles could be combined with the DC information of tracks.

Crystal Array

The calorimeter was composed of an array of 3100 pure cesium iodide (CsI) crystals [58].

It was located at Z = 186.0 meters and had total dimensions of 1.9m × 1.9m × 0.5m.

There were two 15cm2 holes to allow the beams to pass through with no interactions.

A schematic of the calorimeter is shown in figure 2.8. There were 2232 small crystals

of dimensions 2.5cm× 2.5cm× 50cm and were located in the inner portion of the array.

There were 868 large crystals of dimensions 5.0cm × 5.0cm × 50cm and were located

in the outer portion of the array. The dimension in Z of the crystals corresponds to

27 radiation lengths, chosen to completely capture the electromagnetic showers of the



34

������������������������������������������
����������������������������������������������

���� Z

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
���������

��������
��������
��������
���������
���������
���������
���������

��������
��������
��������
��������
��������
��������
��������
��������

���������
���������
���������
���������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

���������
���������
���������
���������
���������
���������
���������
���������
��������
��������
��������
��������
��������
��������
��������
��������

���������
���������
���������
���������
��������
��������
��������
��������

���������
���������
���������
���������

��������
��������
��������
��������

���������
���������
���������
���������
���������
���������
���������
���������
��������
��������
��������
��������
���������
���������
���������
���������

��������
��������
��������
��������

���������
���������
���������
���������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

���������
���������
���������
���������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

���������
���������
���������
���������
��������
��������
��������
��������
��������
��������
��������
��������

���������
���������
���������
���������
��������
��������
��������
��������
��������
��������
��������
��������

���������
���������
���������
���������

���������
���������
���������
���������

��������
��������
��������
��������

��������
��������
��������
��������

��������
��������
��������
��������

��������
��������
��������
��������

��������
��������
��������
��������

��������
��������
��������
��������

��������
��������
��������
��������

��������
��������
��������
��������

��������
��������
��������
��������

��������
��������
��������
��������

��������
��������
��������
��������

��������
��������
��������
��������

��������
��������
��������
��������

��������
��������
��������
��������

��������
��������
��������
��������

��������
��������
��������
��������

��������
��������
��������
��������

��������
��������
��������
��������

��������
��������
��������
��������

��������
��������
��������
��������

��������
��������
��������
��������

��������
��������
��������
��������

��������
��������
��������
��������

��������
��������
��������
��������

��������
��������
��������
��������

��������
��������
��������
��������

��������
��������
��������
��������

��������
��������
��������
��������

��������
��������
��������
��������

��������
��������
��������
��������

��������
��������
��������
��������

��������
��������
��������
��������

��������
��������
��������
��������

��������
��������
��������
��������

��������
��������
��������
��������

��������
��������
��������
��������

��������
��������
��������
��������

��������
��������
��������
��������

��������
��������
��������

��������
��������
��������

����������������������������������������������������������

����������

1.9 m

1.9 m

0.5 m

Y

X

Figure 2.8: Schematic of the CsI calorimeter.
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e±’s and γ’s. This length also corresponds to 1.4 nuclear interaction lengths, thus

making some hadrons (such as π±) minimum ionizing particles (MIP). Each crystal

was wrapped in 13µm of aluminized mylar (upstream) and black mylar (downstream)

such that the light output was uniform along the Z direction and to isolate the crystals

from each other.

The entire CsI array was in a light tight, temperature controlled blockhouse. In

addition, the humidity in the blockhouse was monitored and kept to a low level (< 4%)

to minimize the absorption of moisture in the air of the CsI crystals.

The position resolution of the small crystals was 1 mm and in the large crystals was

1.8 mm. The photon energy resolution was

σ(E)
E

= 0.45% +
2%√
E

, (2.2)

where E is measured in GeV. The constant term is a result from mainly shower fluctu-

ations. The 1/
√
E dependence results from photon statistics in scintillation light. The

CsI calorimeter yielded a very high electron/pion rejection of 500/1.

Readout System

Each crystal was connected to its own PMT, which was fed the scintillation light sig-

nals. An optical link between the crystal and PMT faces was created by the use of

a transparent RTV rubber cookie. The PMT’s were operated at -1200V with a gain

of 5000. Each PMT also was connected to its own digital PMT base (DPMT). The

dynode output of a PMT was sent to the triggering system, while the anode output

was sent to the DPMT.

The main functions of the DPMT circuit boards were to digitize and store the

PMT signals. The DPMT’s contained custom made chips [59] that converted charge

to energy (QIE) by integrating the current output to the PMT’s. The QIE chips were

analog-digital hybrids and were synchronized to the RF of the Tevatron. This resulted

in no deadtime of the readout system. The voltage output of the QIE was sent to a

Flash Analog to Digital Converter (FADC) which digitized the signal. This digitized

signal was sent to another custom made chip called the Driver-Buffer-Clock (DBC).
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The DBC synchronized the signals it received. In the end the signals were sent to the

trigger system through a “pipeline”. The pipeline was a custom buffer system that

sparsified the incoming signals and was set specially for each physics trigger.

CsI Anti and Collar Anti

Another veto counter was located upstream of the calorimeter. The cesium iodide anti

(CIA) was rectangular and was composed of 16 radiation lengths of lead and scintillator

layers, just like the SA’s (see figure 2.7).

A set of veto counters surrounded the beam holes at the upstream edge of the CsI.

They were in the shape of rectangular collars and are referred to as the collar anti (CA)

[60]. A schematic of the CA is shown in figure 2.9. The CA was composed of a three

layer tungsten-scintillator sandwich. Each layer of tungsten was 2.9 radiation lengths.

The counter on each beam hole had four modules (top, bottom, left, right) connected

to PMT’s. The PMT signals were digitized and discriminated and sent to the trigger

system. The CA was used to veto events with electromagnetic particles hitting the CsI

close to the edges of the beam holes. Such events were rejected to ensure that the CsI

energies were well measured.

The positions and dimensions of the CIA and the CA are shown in table 2.4.

Table 2.4: Positions and Dimensions of the CIA and CA.

Counter Z position(m) Outer X(m) × Y(m) Inner X(m) × Y(m)
CIA 185.2 2.20× 2.20 1.84× 1.84
CA 185.9 0.18× 0.18 0.15× 0.15

2.2.4 TRD’s

The transition radiation detectors (TRD) could also used for particle identification,

specifically to enhance the pion-electron discrimination. The TRD’s were not used

in this analysis since the pion-electron discrimination of the calorimeter was superior.

Detailed descriptions can be found in [44, 43].
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Figure 2.9: Schematic of the Collar Anti.

2.2.5 Trigger Hodoscopes

The trigger hodoscopes were designed to count the charged particles at the trigger level.

The hodoscopes were two planes of 1 cm thick scintillator. The upstream hodoscope

was called the V bank and the downstream one was called the V
′
bank. They were

both located upstream of the CsI; the V bank was located at Z = 183.90 meters and V
′

at Z = 183.95 meters. They were each arranged in an array of paddles in the vertical

direction, 16 paddles above and 16 paddles below the beam. The total cross-sectional

area was 1.9m × 1.9m with two 14cm2 beamhole to minimize beam interactions. The

paddles were of five different widths (9.92 cm, 11.82 cm, 13.74 cm, 15.63 cm, 17.76

cm) to reduce inefficiencies due to cracks. To avoid double counting by one charged

particle, there were no overlaps between the paddles in each bank. Figure 2.10 shows

a schematic of the trigger hodoscopes.

There were PMT’s mounted on the top and bottom of each paddle through light
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Figure 2.10: Schematic of the trigger hodoscopes. They were located about 2 meters
upstream of the CsI. The V bank was located slightly upstream of the V

′
bank.

guides. The analog signals were summed and discriminated and sent to the trigger

system. Every charged trigger required hits in the trigger hodoscopes.

2.2.6 Lead Wall and the Hadron Anti

A 15 cm thick lead wall (or 0.9 radiation lengths) was located at Z = 188.5 meters,

downstream of the CsI. The total cross-section of the lead was 2.43m × 2.43m. There

was also a hole in the center of the wall 60cm×30cm to allow the beams to pass through

without interacting. The lead wall was placed there to absorb traces of electromagnetic

showers leaking from the CsI. It also produced hadronic showers of hadrons (such as

π±) that did not shower in the CsI.

Immediately following the lead wall was the hadron anti (HA) at Z = 189.0 meters

[61]. The HA was placed there to detect the hadronic showers from the lead wall. It

was composed of 28 scintillator paddles, 14 above and 14 below the beam. The total

cross-section of the HA was 2.24m× 2.24m. There was also a hole in the center of the
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Figure 2.11: Schematic of the Hadron Anti.

HA 64cm× 34cm to allow the beams to pass through without interacting. Each paddle

was connected to a PMT, whose analog signals were summed, discriminated and set

to the trigger system. Hadronic activity could be rejected by triggering on the HA. A

schematic of the HA is shown in figure 2.11.

2.2.7 Muon System

A steel wall 3 meters long, located at Z = 191.7 meters, was used to stop nearly all

particles except muons. The cross-sectional area of the wall was 4.3m×3.4m. Following

this steel wall was the MU2 counter located at Z = 194.8. This counter was made of 56

scintillator paddles, whose dimensions can be seen in the bottom of figure 2.12. This

counter was designed to be large since it was located so downstream and was needed to

capture muons that scattered in the steel. Following MU2, at Z = 195.3 meters, was

another wall of steel 1 meter long with a cross-sectional area of 3.5m× 3.6m. The MU3

counters were located at Z = 196.4 meters. These consisted of 40 paddles of scintillator
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each and are shown in figure 2.12 top. One of the MU3 counters were oriented in the

X-direction and the other in the Y-direction.

Individual muon paddles had dimensions of 15cm × 150cm. Two of these paddles

formed an entire paddle, overlapping by 1 cm reducing the inefficiency of the muons

traversing the gap between them.

Each paddle was connected to a PMT, whose analog signals were summed, discrim-

inated and set to the trigger system. These counters were used to trigger events with

muons. In this analysis, only MU2 was used to veto events with muons. The muon

system is described in great detail in [41].

2.2.8 Accidental Counter

In order to accurately simulate the activity in the detector, it was necessary to collect

events that reflected “accidental” activity. Accidental activity is activity from beam

particle interactions uncorrelated to detector activity. It is important to understand

accidentals since they can corrupt the signature of a particular kaon decay.

The “90◦” accidental counter was placed near the target. This counter was com-

posed of 3 scintillator paddles placed 90◦ with respect to the beam direction (or Z

direction), 1.8 meters away from the target. These telescope-like counters viewed the

target through a small hole, 1
4 in× 1

4 in, in the target pile (see figure 2.2). Each block of

scintillator was 3
4 in× 3

4 in× 7
16 in and were separated by 1.5 in. Their signals were sent

to the trigger system and when all three counters fired in coincidence the accidental

trigger was satisfied, thus causing a snapshot of the detector to be written to tape.
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Chapter 3

Event Selection

In KTeV, there were two stages to the event selection process. The first stage occurred

while the data was being collected (online) and the second after the data was collected

(offline). The trigger system defined the online selection process, after which the data

was reduced offline into physics analysis subsets.

3.1 Trigger

Due to the high rate of kaon decays in KTeV (∼ 1MHz), the trigger system was designed

to quickly decide to accept the events of interest while rejecting the events of no interest,

which were the majority. The trigger was composed of three levels and they are briefly

described below. A detailed description of the E799-II trigger is in [46].

3.1.1 Level 1

The first level of triggering used hardware logic. As described in chapter 2, signals from

phototubes from the RC/SA/CIA photon vetoes, the trigger hodoscopes V and V
′
, the

HA and muon counters and the sum of the total energy from the CsI were all sent to

the triggering system. These were the fastest signals the detector had available since

they were processed within one RF bucket (see section 2.1.1). There was another set

of signals used in the level 1 trigger called the Drift Chamber OR (DCOR) [62]. The

sources of these signals were the X and Y plane pairs of DC1 and DC2. These signals

were not as fast as the others and were processed within 4-5 buckets.

These signals were synchronized to the RF of the Tevatron to within 2 ns and the

trigger decisions were made using a logical combination of these signals. Effectively,

the level 1 trigger had no deadtime.
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3.1.2 Level 2

The level 2 trigger was also a hardware trigger and was a slower trigger than level 1.

The types of decisions the level 2 trigger made were more time consuming and ranged

from 800 ns - 2.5 µs. There was no level 1 triggering during level 2. For events which

passed the level 2 trigger there was a deadtime of 15 µs to allow data to be sent to the

next level of the triggering system.

There were six systems that were used to decide if an event would pass the level 2

trigger. The functions of these systems were:

• Hit counting in the DC’s.

• In-time pair finding in the DC’s.

• Finding tracks in Y-direction in the DC’s.

• Cluster counting in the CsI.

• Electron tagging in the TRD’s.

• Stiff track trigger for hyperon decays.

Only the first four systems above were used in the events selection for this analysis

and are described below.

Hit Counting

Electronics modules integrated with the DC’s were used to count the number of hits

in the X and Y views in DC1-DC4. The information of a hit being in-time with the

bucket that triggered level 1 was not available through these modules. The hit counting

information had a processing time of 800 ns.

In-time Pair Finding

The TDC’s described in chapter 2 were used to measure if a hit in the DC’s were in-

time. Electronics modules were used to reject out-of-time hits. Pairs of in-time hits

were used to calculate a SOD (the sum of two drift distances; again see chapter 2) and
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the means of the SOD’s were used to decide when events passed the level 2 trigger. The

in-time pair finding had a processing time of 800 ns.

Hardware Cluster Counting

A shower of energy was deposited in the CsI calorimeter for electromagnetic parti-

cles and was defined as a “cluster” if the energy was > 1 GeV. The hardware cluster

counter (HCC) [63, 64] counted in-time clusters with the discriminated PMT signals

from the 3100 CsI crystals. The HCC recorded which CsI channels were “on”. The

HCC consumed the longest processing time of the level 2 trigger of 2 µ s.

Y-track Finding

The Y-track finder (YTF) [65] used the DC hit information from the hit counting and

in-time pair finding modules described above and searched for hit patterns in the Y-

direction. The hit and position information of the Y-views in the upper and lower parts

of the DC’s were sent to the triggering system for processing.

3.1.3 4TRACK Trigger

The data for this thesis were collected in trigger called the 4-track trigger, designed for

decays with a four charged particle final state. The level 1 and level 2 elements of this

trigger were as follows:

LEVEL 1:

• 3V-TIGHT: ≥ 3 hits in V and ≥ 3 hits in V
′
.

• 2DC12-MED: 3 out of 4 DC12 planes with ≥ 2 hits, 1 plane with ≥ 1 hit.

• ET-THR1: ET OT AL of CsI ≥ 11 GeV.

• MU2: Veto events with ≥ 1 hit (15 mV, 0.2 MIP) in MU2.

• PHV : Veto events with ≥ 500 MeV in PHV or events with ≥ 400 MeV in the

SA.
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• CA: Veto events with ≥ 14 GeV in the CA.

LEVEL 2:

• 34-HCY: require ≥ 3 hits in DC1Y, ≥ 3 hits in DC2Y and ≥ 4 hits in DC3Y, ≥ 4

hits in DC4Y.

• HCC-GE2: require ≥ 2 HCC clusters.

• YTF-UDO: require a good track in the upper half and good track in the lower

half or one good central track.

• 3HC2X: require ≥ 3 in-time hits in DC2X.

3.1.4 Level 3

The next level of triggering, level 3, was a software trigger. The level 3 trigger is also

referred to as the “filter code”. The output of the level 2 trigger was interfaced with

the data acquisition system (DAQ) [66, 45, 47, 44] composed of four SGI challenges.

The level 3 software performed quick offline reconstruction of events, which were sub-

sequently written to 10 GB Digital Linear Tapes (DLT). Software tags were created for

different criteria which had a basis on predetermined physics analyses. The details of

the level 3 filtering code can be found in [67].

The level 3 filter code requirements to tag an event as a four-track event were 1:

• Find at least three tracks in the DC X view and at least three tracks in the Y

view. No sharing of hits between two tracks.

• Find at least one vertex candidate.

• Require the reconstructed vertex Z position to be between 90.0 and 158.0 meters.

3.2 Data Reduction

At the end of the winter and summer running periods, 850 DLT’s worth of raw rare

decay data was collected. The winter runs ranged from run number 8028-8910 and

1See chapter 4 for the details of event reconstruction.
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the summer runs from 10463-10970 2. Since the 850 tapes contained all the data for

all analyses, there were two basic steps taken to reduce the data: the “split” and the

“crunch”.

3.2.1 E799 Split

The E799 “split” refers to a sorting of the data into smaller subsets based on different

physics interests. There was a total of 19 different output streams based on trigger type

and level 3 tags and written to tape. Some of the output streams were based on data

collected for calibration purposes and also accidental activity data used in the detector

simulation (see chapter 5).

The trigger used in this analysis, the 4TRACK trigger, were split and copied to a

total of 82 DLT’s, 38 DLT’s of winter data and 44 DLT’s of summer data.

3.2.2 4TRACK Crunch

The 82 DLT’s containing the 4TRACK data was still unwieldy and was further reduced.

This time the tapes were “crunched” to a sample that met more requirements specific

to this analysis. The crunch code was similar to the filter code, yet included more

sophisticated track, cluster and vertex finding methods. For this analysis, the crunch

code requirements were:

• Verify that the level 3 4TRACK tag was set.

• Find DC tracks and allowed a single Y-track to share two X-tracks.

• Find at least one vertex candidate.

• At least three tracks must match with a CsI cluster.

• Find at least three electrons, defined as the ratio of the calorimeter energy (E) to

the track momentum (p) to be 0.9 < E/p < 99.0.

2In this analysis, runs less than run 8245 were not used due to a swapped HCC cable. This accounts
for less than 1% of the winter data.
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The details of the 4TRACK crunch are in [68]. At the end of the crunch the data

was reduced to two DLT’s used in this analysis, one tape for the winter data and one

for the summer. Therefore, the data was reduced to an easily manageable level for

analysis.
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Chapter 4

Event Reconstruction

In this analysis, the final state is composed of four charged particles. This chapter de-

scribes the algorithms for reconstruction of charged particles. Reconstruction included

finding tracks using drift chamber (DC) information, which were used to measure the

trajectories and momenta of the charged particles. Reconstruction also included find-

ing CsI clusters to measure energies of electromagnetic particles and matching them

to tracks to find the decay charged vertex. This chapter also describes the calibration

of the DC and CsI detectors. Calibrations of other detector systems are discussed in

[45, 41].

4.1 Track Finding

4.1.1 Hit Pairing

The first step in finding tracks was to look for signals (or hits) in the drift chambers

from the TDC’s (see chapter 2). Only hits that were in-time, or within a window of 115

ns to 350 ns, were used in the track finding algorithm. In the event when a wire had

more than one hit, only the earliest hit was used. The TDC signals recorded the drift

times, which were converted to drift distances using a conversion table (or XT maps)

described in section 4.1.3 on DC calibration.

When a charged particle traveled through the DC’s, it resulted in hits in the adjacent

sense wires surrounding the particle’s trajectory. In other words, pairs of hits were

produced in two sense wires of complementary pairs of sense planes (such as X −X
′
or

Y − Y
′
) when a charged particle traversed a DC. These hit pairs were the foundation

of track reconstruction.
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Figure 4.1: Illustration of different SOD categories. The vertical lines indicate part
of the track trajectory (only one DC view is shown). The horizontal lines represent
measured drift distances. The dotted horizontal line indicates that the track could
have passed on either side of the sense wire for an isolated hit.

The drift distance from one sense wire was added to the drift distance of its corre-

sponding hit pair from the adjacent wire to form the sum-of-distances (SOD). A SOD

should ideally equal half the cell size or 6.35 mm. A hit pair accepted for track recon-

struction was required to have a SOD that was different from half a cell size by less

than ±1mm. (In DC3X and DC4X the difference was required to be within ±1.5mm

due to possible large angles of tracks deflected by the analysis magnet.) An illustration

of a “good” SOD is shown in figure 4.1. A histogram of a typical SOD distribution is

shown in figure 4.2 [43].

In addition, a “low” SOD was produced if two separate tracks were so close that

they traveled through the same half cell. A low SOD was produced a result of kaon

decays with very small opening angles. Another possibility was that low SOD’s were
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Figure 4.2: Typical SOD distribution in DC Y view. This distribution was constructed
using KL → π0π0 decays with one π0 → e+e−γ. The spike at zero is due to isolated
hits. The low side tail is mainly due to δ rays.
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due to δ rays, high energy charged particles passing through material which ejected

electrons sideways that traveled rapidly towards a sense wire. An illustration of a low

SOD is also shown in figure 4.1.

A “high” SOD was produced if a track passed very close to a wire in one of the

complementary sense planes. What made an SOD high was due to discrete ionization

and inefficiencies in detecting electrons. An illustration of a high SOD is shown in

figure 4.1.

One final possibility is that there was a missing hit in the complementary sense

plane, referred to as an isolated hit. This was a result of inefficiencies in the wires, such

as a defective wire due to contamination or a kink. The direction information of the

track is missing in an isolated hit but could still be used in the overall track candidate

decision making algorithm. An illustration of an isolated hit is also shown in figure 4.1,

where the dotted line indicates that the track could have passed on either side of the

sense wire.

4.1.2 X and Y Tracks

After pairing hits, the Y track candidate search began. It was simpler to search for

Y tracks before X tracks since there was no magnet bending of the tracks in the Y

direction.

To find a Y track, pairs of hits in DC1Y and DC4Y were located and defined a

straight line. Then pairs of hits were identified in DC2Y and DC3Y that laid within 5

mm of the line. For each track, up to two low SOD hits or one isolated single hit and

one low SOD hit were allowed, while all other hits were required to be good SOD pairs.

Once a set of four pairs was found along a straight line, a least-squares fit to a straight

line was performed and a fit χ2 was calculated. To be considered a Y track candidate,

the fit χ2 was required to be less than (2mm)2. This was repeated for all combinations

of DC1Y and DC4Y pairs. At this point, a minimum of two Y track candidates were

required to accept the event.

Next, it was necessary to determine if the Y track candidates could coexist. Y tracks

were not allowed to coexist if they shared any hits, with one exception. Tracks were



52

allowed to share hits and coexist if the tracks shared a hit in one sense plane of a sense

plane pair, but not in the complementary plane, and for each track the hit was part

of a good SOD pair. This prevented the rejection of events with tracks that passed

through adjacent cells and the SOD’s for both pairs happened be “good”. In addition,

up to four low SOD hits or two isolated single hits plus one low SOD pair were allowed

in the total number of track candidates. At least two coexisting Y tracks were required

to accept the event.

The next step was to find the X tracks. In this view, the tracks were made up of

two segments due to the magnet bend. The upstream X track segments were searched

for first. Each pair of hits in DC1X and in DC2X defined a line for a possible upstream

track segment. The angle between this line and the Z axis was required to be less than

100 mrad. Up to two low SOD hits or one isolated hit were allowed when finding an

upstream track segment, otherwise all other hits were required to be good SOD pairs.

Similarly, pairs of hits in DC3X and DC4X defined possible downstream track segments.

The angle between the downstream line and the Z axis was required to be less than

150 mrad. In this case, at most one low SOD hit or one isolated single hit was allowed.

For each upstream and downstream combination of X segments, the distance between

the two segments, projected to the plane of the magnet bend at Z = 170.0 meters, was

required to be within 6 mm to qualify as an X track candidate. In addition, just as for

the Y track candidates, up to two low SOD hits or one isolated single hit and one low

SOD hit were allowed to qualify as an X track candidate. At this point, a minimum of

two X track candidates were required to accept the event.

It was again necessary to determine if the track candidates could coexist, this time

in the X view. The X track candidates had the same requirements for coexisting as did

the Y tracks. At least two coexisting X tracks were required to accept the event.

In order to match X track candidates with Y track candidates more information was

necessary, at this point. This information is obtained from the CsI cluster positions.
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4.1.3 Drift Chamber Calibration

A brief description of the DC calibration is presented here. Additional information of

the DC calibration process is discussed in [69].

Time-to-Distance Calibration

The first step to calibrating the time-to-distance conversion was to calibrate the relative

timing between wires. Variations in cable length and in channel or module differences

of the TDC’s created TDC timing offsets between wires. The TDC’s ran with a trigger-

provided common stop. The number of TDC counts for each wire that corresponded

to zero drift distance was defined as the T0. A sharp edge in a TDC distribution for

a wire also marked the T0 for that wire. Using plentiful KL → π±e∓νe (Ke3) decay

tracks, each TDC distribution edge for each wire was compared to the others to obtain

the timing offsets.

Once all the T0 offsets were obtained, time-to-distance (XT) maps for each chamber

were calculated. It was assumed that the illumination of tracks (distribution of hit

times) across each cell was uniform. A result of this assumption was that the XT maps

were independent of the hit location within a chamber and therefore were calculated

for each chamber. The online XT maps were generated using special muon data and

were stored in the database. The offline XT maps were generated using Ke3 decays.

The conversion from a TDC count t to a drift distance X(t) was

X(t) = dcell ×
∑t

t
′
=t0

N(t
′
)∑tm

t′=t0
N(t′)

, (4.1)

where N(t
′
) is the number of hits at TDC count t

′
, t0 is the earliest TDC hit (largest

number of TDC counts due to common stop) and tm is the latest TDC hit (smallest

number of TDC counts). The sum is in bins of 0.5 ns, which is the TDC least count.

Drift Chamber Alignment

There were three steps in aligning all of the drift chambers. First, the DC’s were

internally aligned with respect to each other. This left out an overall “corkscrew”
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Figure 4.3: Illustration of a corkscrew rotation between DC1 and DC2.
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rotation that needed to be removed. Finally, the DC’s were aligned globally to other

fixed elements of the detector.

The data used to internally align the DC’s were special muon data with the analysis

magnet turned off. Therefore, this data contained straight charged muon tracks. The

technique was to assume two of the DC’s were fixed and find the locations of the others.

For example, a straight muon track was reconstructed using hits only from DC1 and

DC4. The differences in the X and Y locations of this reconstructed line and the actual

hits in DC2 and DC3 indicated the amount of alignment needed. The offsets in X and

Y and rotations in the X-Y plane of the two DC’s relative to the others were obtained.

This method of internally aligning the DC’s resulted in a residual corkscrew rotation

between the two DC assumed to be fixed in the scenario above. This is a rotation of

the entire DC system. Again, Ke3 decays were used to remove this rotation. Since

the two tracks in these decays originated from a single vertex, they defined a plane.

Therefore, a rotation would indicate an apparent separation of the tracks at the vertex.

If a corkscrew rotation existed, then a rotation between DC1 and DC2 would appear

as shown in figure 4.3. If we define #r1 to be the vector connecting the hits between the

two tracks in DC1 and #r2 to be the vector connecting the hits between the two tracks

in DC2, then if a corkscrew angle existed between DC1 and DC2

#r1 × #r2 = | #r1|| #r2| sinφ. (4.2)

Of course, if a corkscrew angle did not exist between DC1 and DC2 then #r1 × #r2 = 0.

Plotting #r1× #r2 vs. | #r1|| #r2| for the Ke3 events, the rotation angle φ was obtained. Since,

this angle was uniform along Z, the angle as a function of Z yielded the correction factors

for the other 2 DC’s.

Finally, after the internal and corkscrew corrections were applied, the DC system was

aligned to fixed external elements such as the target and the calorimeter. Reconstructed

KL → π+π− decay were used to obtain these corrections. The total kaon momentum

vector for these decays were projected to the target at Z = 0 meters to find the

reconstructed X and Y projected locations at the target. Then, electron tracks from

Ke3 decays were used in a similar procedure as in the internal alignment of the DC’s.
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The electron track was projected to the face of the CsI. The difference in the track

position (X and Y) at the CSI and the cluster energy center position (X and Y) were

obtained as a function of the position in the CsI array. This yielded the offsets and

rotations of the DC system with respect to the CsI. Finally the reconstruct target and

CsI positions were used to correct the position of the DC’s by iteratively making the

corrections until the surveyed target and CsI positions were reconstructed.

4.2 Cluster Finding

4.2.1 Hardware and Software Clusters

In the clustering algorithm, there were two passes of clustering, a “hardware” pass using

the HCC and a “software” threshold pass.

CsI crystals with the HCC bit set was one of the criteria for a hardware cluster.

The cluster finding algorithm also searched for the local maximum in crystal energies by

comparing crystal energies to neighboring crystal energies. The highest energy crystal

of all its neighbors was defined as the cluster “seed”. The total energy of the cluster

included energies from the crystals surrounding the seed with energy greater than the

HCC threshold. If the seed was one of the small crystals, then the maximum cluster size

was a 7× 7 array of small crystals. If the seed was a large crystal, then the maximum

cluster size was a 3×3 array of large crystals. If the seed was near a small/large crystal

boundary, the cluster size was a 3×3 array of “large” crystals, where four small crystals

could be grouped together as one “large”.

Software clusters were clusters whose seed crystal did not have the HCC bit on

and had an energy greater than 100 MeV. The total cluster energy was required to be

greater than 250 MeV.

The cluster positions were calculated using the ratios of seed block energy to neigh-

boring block energies and then using a generated look-up table. The X positions were

obtained from the sum of the column energies and the Y positions from the row energies.

The cluster position resolutions were on the order of 1 mm.

Electromagnetic particles (e±, γ) produced hardware clusters, whereas minimum
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Figure 4.4: E/p distribution before and after the energy calibration. After the data
was calibrated, the mean and the resolution were both greatly improved.

ionizing particles or MIP’s (π±,µ±) mostly produced software clusters since their ener-

gies in the CsI were typically around 350 MeV.

4.2.2 Cluster Energy Calibration

The energy in each CsI crystal was measured using four digital PMT (DPMT) slices

(or RF buckets), the first of which was the in-time slice. Roughly 95% of the energy in

a cluster was contained in four slices. Correctly, determining the energy in each crystal

required two different calibrations [70, 71].

First, the conversions between the DPMT counts and the PMT charge for each

channel were needed to obtain the correct cluster energies. These conversions were

calibrated using a laser light system that “scanned” the entire CsI array. A single laser

source produced light pulses that were delivered to each crystal by means of optical

fibers during calibration data taking periods. The responses of the DPMT’s to the

laser light source were measured and calibrated using many different size pulses.

Next, the charge to energy conversion was calibrated in each crystal using electrons

from Ke3 decays. The ratio of cluster energy to the measured track momentum, E/p,
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of the electrons should average to unity, since electrons deposited most of their energy

in the calorimeter. A departure from unity was due to miscalibrated crystals, so a set

of calibrations constants for the entire running period were generated to calibrate the

crystal energies. The improvement in the energy measurement when using the energy

calibration constants is illustrated in figure 4.4 [44].

4.2.3 Cluster Energy Corrections

After clusters were found, there were several corrections made to the energies [72, 73].

There were corrections made to the individual crystals (first five in list below) and

corrections to the total energy (last item in list).

• Overlap Correction: This correction addressed the problem of having clusters

that shared crystal energies. The energy in the overlapping crystal was divided

between the clusters. The division was based on the total cluster energy and the

position of the overlapping crystal within the cluster. geant [74] was used to

estimate the corrections.

• Neighbor Correction: This correction was applied to high energy clusters that

deposited a small fraction of their energy outside the 3×3 or 7×7 crystal array that

defined the cluster. The energy of a neighboring cluster (non-overlapping) was

adjusted, which may have otherwise measured a higher energy. This correction

was also estimated using geant simulations.

• Missing Block Correction: This correction estimated the amount of unmeasured

energy when a cluster was located near the edges of the CsI array. This was

corrected by adding the amount of energy missing had there been more crystals

at the edges. geant was used to estimate the amount of energy to add.

• Sneaky Energy Correction: This correction, similar to the Missing Block Correc-

tion, added energy to clusters near the beam hole edges. The sneaky energy is

the component of the cluster energy that traversed the beam hole and deposited

energy on the other side.



59

• Threshold Correction: This correction accounted for crystals part of a cluster

whose energy was below the readout threshold. These corrections were estimated

by data collected with no threshold and were a function of cluster energy and

crystal position in the cluster.

• Intra-Block Correction: This correction addressed the non-uniform response across

a crystal face. The energy correction depended on the position of the cluster on

the seed crystal face (boundary vs. center). This effect was observed and cor-

rections were estimated from data. This effect was not simulated in the Monte

Carlo.

4.3 Decay Vertex Finding

In this analysis, there were four charged final decay particles. The decay vertex finding

algorithm searched for four-track vertex candidates. At this stage in the event recon-

struction process, at least two coexisting X tracks, at least two coexisting Y tracks and

at least two HCC clusters were found. The next goal was to find the position of the

decay vertex by matching X tracks to Y tracks to clusters.

The first step in finding a four-track vertex was to find all possible four-track in-

tersections in the Y view, to within 2 mm. In this analysis, two X tracks were allowed

to share a Y track, so a minimum of two intersecting Y tracks were allowed. The Z

location of the intersection was required to be within the allowed decay region. For an

event to be accepted, at least one Y intersection was required.

Next, all possible four X track (upstream segment) intersections were found to within

2 mm. The direction of the magnet bend determined the charge of each track and only

two positive and two negative charged tracks were allowed. Again, the Z location of

the intersection was required to be within the allowed decay region and at least one X

intersection was required.

To match the newly-found X tracks to Y tracks, the CsI cluster information was

needed. The projected locations of the X and Y track to the calorimeter face were

matched to cluster locations. All possible X-Y track combinations were investigated and
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the combination with the smallest track-cluster separation was considered the correct

X-Y track match. In addition, the track-cluster separation was required to be less

than 7 cm and tracks must point within the CsI array to ±1.5cm in both then X and

Y directions. “Extra” clusters, or clusters with no track match, were candidates for

photons. In this analysis, either all four tracks were required to have a cluster match

or three tracks matched a cluster and only one of the tracks point to the beam hole at

the face of the CsI.

For each four-track vertex candidate, various corrections were made to the tracks.

The hit positions of the tracks were corrected for DC alignment and DC rotations about

the Z axis. Fringe fields from the analysis magnet [75] also affected the hit positions

in DC2 and DC3 and corrections were applied. After these corrections were applied,

the X and Y views of each track were required to have at least one good-sod pair.

The Z position of the four-track vertex was calculated as a weighted average of X-Y

intersections, while the vertex X(Y) position was an average of the X(Y) positions of

the tracks at the Z. Again, the vertex Z location was required to be within the allowed

decay region. A χ2 was calculated for the vertex position and one was calculated for the

upstream and downstream offsets in X and Y at the center of the magnet. The figure

of merit for the “best” vertex was a combination of these two χ2’s and the number of

good SOD’s found. In the end, the track-cluster information for all four tracks were

obtained, such as the track trajectories and the momenta.
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Chapter 5

Monte Carlo Simulation

The Monte Carlo (MC) simulation was an important tool in all KTeV analyses. The

simulation consisted of kaon production and decay, particle tracing through the detec-

tor, simulation of the detector as well as the trigger and the level of accidental activity.

Simulations of kaon decay samples were treated as similarly as possible to the data.

The Monte Carlo was used to determine the acceptances, or reconstruction efficiencies,

of different decay modes. It was also used to estimate the background level observed

in a given decay mode. Comparisons were made between data and Monte Carlo to

estimate the level of systematic error in a measurement.

5.1 Event Generation

5.1.1 Kaon Production

The production of a kaon was defined by the point on the target where it was produced,

the momentum and direction of the kaon and the location in Z where the kaon decayed.

Generated kaons in this analysis were produced with momentum ranging from 20-

220 GeV/c and a Z position of the decay between 90-160 meters. The generated kaon

momentum and KL decay Z position are shown in figure 5.1. The location on the target

where the kaon was generated was a function of the interaction depth of the target,

the proton beam size and the targeting angle. The distribution of the kaon momentum

and direction were generated from the Malensek parameterization [76]. The parameters

were obtained from measurements of charged kaons, K±, produced by 450 GeV protons

striking a beryllium target. By valence and sea quark counting [54], we estimated the

production probabilities, σ, for K0 and K̄0 in terms of the production probabilities for
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Figure 5.1: The Monte Carlo generated kaon momentum and decay Z position.

K+ and K−:

σ(K0) ∼ σ(K+) + σ(K−)
2

(5.1)

σ(K̄0) ∼ σ(K−)

The momentum spectrum was further tuned to match the kaon momentum measured

using KL → π+π− decays in KTeV. In the end, there was a relative mix of K0 and K̄0

of 55% and 45%, respectively. A detailed discussion of kaon production in the KTeV

MC is found in [45, 54].

5.1.2 Kaon Decay

Once the kaon was produced, the location of the kaon decay was selected. First, the

kaon was propagated to the beginning of the decay region of Z = 90 meters. If the

kaon path was traced going through one of the collimators then that kaon was rejected
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and a new one was produced. After the Z position of the decay was determined, the

preselected decay mode was generated.

5.2 Particle Tracing

The decay particles were boosted to the lab frame and traced along their direction of

flight to each of the detectors. The particles traveled through the detector until they

hit a photon veto or the calorimeter or they escaped the detector region. For photons

and electrons, the tracing would stop if they hit a photon veto or the calorimeter.

Particles were considered “lost” when they traveled outside the detector geometry. In

this analysis, no generated signal particles were allowed to be lost.

Several particle interactions with detector material were included in the simulation.

Charged particles between the vacuum region and the calorimeter could experience

Coulomb multiple scattering according to Molière theory [77, 78]. Electrons were also

allowed to emit bremsstrahlung photons according to the Bethe-Heitler cross-section

[79]. Photons were also allowed to convert in the detector material. The conversion

probability was (1− e−
7
9
(X/X0)), where X/X0 was the fraction of a radiation length the

particle traveled through [46, 79, 80].

After all particle tracing, the detector element performance and digital response

(digitization) were simulated using information saved during tracing. The behavior of

charged particles in the magnetic field was also simulated.

5.3 Detector Simulation

5.3.1 Photon Vetos

The particle tracing was stopped when a photon or an electron was propagated to a

photon veto (RC, SA, CIA). The response of a photon veto detector to electromagnetic

particles was that they deposited all their energy in these detectors. The energies were

smeared by a Gaussian distribution to simulate the detector resolution. The width of

the distribution was determined by the photons in KL → π+π−π0 data.

The response of the photon vetos to charged pions and muons was simulated as
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MIP’s. Again the energy deposited was smeared according to the energy resolutions

from muon data [45].

5.3.2 Drift Chambers

The response of the planes of DC wires to charged particles was simulated. The drift

distance to the closest wire to the charged particle was calculated just as in the data.

The distance was smeared by a Gaussian to simulate the measured position resolution of

the drift planes in data of ∼ 100µm. These drift distances were converted to drift times

using the calibration constants in the XT maps (see 4.1.3). The discrete ionization of

the gas which modifies the drift distances was also simulated [41].

The DC inefficiencies were simulated by only recording the earliest hit within a time

window of 235 ns. The inefficiencies were also simulated by randomly not recording hit

information.

The details of the simulation of δ-ray production was also included and is discussed

in [45, 47].

5.3.3 Calorimeter

The simulation of the CsI calorimeter consisted of the simulation of cluster energies and

of the readout system [81, 45]. The generation of cluster energies was highly dependent

on the type of particle that came in contact with the calorimeter. Photons, electrons

and charged pions whose trajectories were propagated to the calorimeter were stopped

there and their energy showers were simulated. Muons, on the other hand, deposited a

MIP energy and were allowed to pass through the calorimeter. The energy deposition

of a muon was restricted to a single crystal. The details of the muon energy simulation

is described in [41].

The electron and photon shower simulations were conducted slightly differently than

the pion shower simulation since the electron and photon showers were fully contained

in the CsI [81, 45, 49, 41]. The electron/photon shower simulations were selected

randomly from electromagnetic shower libraries generated by geant. Inputs to the
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shower libraries were the transverse position of the shower mean 1 and the energy.

Before choosing a library, the energies were smeared by a Gaussian to match energy

resolutions seen in the data. The showers were generated for six energy slices of 2, 4,

8, 16, 32 and 64 GeV. The energy was then divided into 13 × 13 small crystal square

regions (a large crystal was treated as four small crystals). The shower information was

also sliced into 25 equal regions in Z (depth) due to the observed non-uniform behavior

of the CsI. The shower was also indexed by position bins of 50× 50 across the face of

a crystal to locate the shower center. The position bins were designed to best simulate

the position resolution. There was also a “sneaky energy” library that added energy to

particles traversing the beam holes.

A charge pion could deposit only a MIP of energy or it could shower. The charged

pion shower library was also generated using geant [49]. The shower simulation for

pions was similar to the one described above for electrons and photons with some

differences. The energy was divided into 12 bins ranging from 2-64 GeV. The shower

was also indexed by position bins of 10 × 10 across the face of a crystal to locate the

shower center.

Finally, the total light deposited in each crystal was determined. The time structure

of the PMT pulses and the digitization of the DPMT’s were simulated with smearing

to match the photon statistics effects seen in data (see 2.2.3). The conversion to charge

was determined using lookup tables obtained from data.

5.4 Accidental Activity

It was important to include accidental activity in the event generation since it was

possible to lead to biases in event reconstruction. Accidental activity could corrupt

tracks or increase cluster energy so it was necessary to include it in the Monte Carlo.

Accidental events from the accidental trigger (see 2.2.8) collected during data taking

were overlaid on top of generated events after the generation and tracing stages. Acci-

dental overlays were added before threshold and trigger evaluations. Accidental energy

1The shower mean position was a function of energy and was slightly different for photons and
electrons.
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was added to a simulated event, accidental DC hit information was merged with that of

the simulated event and the trigger information was also combined. Accidental overlays

were a function of run number and also supplied a spill number to the generated event.

Accidental overlays also provided a method of determining the level of systematic

uncertainty in a measurement due to accidental activity. Studying possible differences

in the detector acceptances from MC samples generated with and without accidental

overlays could yield in a source of systematic uncertainty.

5.5 Trigger Simulation

The Monte Carlo simulates the behavior of all the trigger elements. The pattern of trig-

ger sources and lookup tables were identical to the ones during data taking conditions.

The trigger definition file was the same as the one used online (see 3.1.3).

Most of the level 1 trigger elements were simulated simply as detector energy thresh-

olds that included generated and accidental energies. The DCOR trigger sources were

simulated using the DC hit information. The level 1 photon veto sources were evaluated

immediately after particle tracing, rejecting events to reduce CPU time. The level 1

trigger was fully evaluated after all the detector simulations were complete.

The level 2 elements were simulated with the exact algorithms used during data

taking. The level 3 software was exactly the same as the online software (see 3.1.4), as

were the calibration constants.

5.6 Individual Decay Generators

To measure theKL → e+e−e+e− branching ratio, the events were normalized to another

kaon decay mode with a well measured branching ratio. This normalization decay mode

should also have similar final state particles as the signal decay mode to minimize

systematic biases. The decay mode used that fits this description is the decay mode

KL → π0π0
Dπ0

D
2. The decay generators of these two decay modes are described in this

section.

2The π0
D refers to the Dalitz decay π0 → e+e−γ.
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5.6.1 Monte Carlo Simulation of KL → e+e−e+e−

The KL → e+e−e+e− decay was simulated using the matrix element of Miyazaki and

Takasugi [24] as was described in 1.4.1. This model assumes a point-like structure

of the KL, however the decay generator was constructed to include any form factor

parameterization, such as the ones described in 1.6.

Since an exact QED calculation of the radiative corrections to KL → e+e−e+e−

does not exist, approximate corrections were implemented. Until recently, the photos

package [82] was the only simulation we had for radiative corrections for the signal

mode. photos uses pure QED radiative corrections with a single photon in the leading-

logarithmic approximation. There also exists a simulation package [83] in which the

radiative corrections to KL → e+e−e+e− were implemented numerically in our Monte

Carlo. The corrections contained the radiative double Dalitz decay, KL → e+e−e+e−γ,

which included radiative diagrams of the order α3, compared to the tree level process

of order α2. There were also virtual corrections that could be implemented to the

tree-level process but were not used in this analysis since not all virtual contributions

existed in the simulation. These virtual corrections included higher order loop graphs

that occur at order α4. Another known difference between the two simulations in the

signal Monte Carlo was the value of the photon energy cutoff. The photos Monte

Carlo is capable of a minimum cutoff of 1 MeV and this was the cutoff used. The

minimum cutoff in the KTeV radiation simulation used for the four-electron final state

was 4 keV. Effects of radiative corrections were studied using these two simulations, as

well as with no implementation of the radiative corrections.

5.6.2 Monte Carlo Simulation of KL → π0π0
Dπ0

D

The decay generator of KL → π0π0
Dπ0

D consisted of two parts. First, the decay KL →
π0π0π0 was generated and then the three π0’s were allowed to decay, one π0 → γγ and

two π0 → e+e−γ.

The decay KL → π0π0π0 was simulated based on a pure phase space distribution,

with no structure in the decay matrix element. The decay π0 → γγ was also simulated
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assuming uniform phase space.

The π0 Dalitz decay was simulated using the matrix element calculation of Kroll and

Wada [25]. The simulation included a form factor of the form 1+ a · x, where the value
of the parameter a used was the measured value of 0.032 in the PDG [10]. Radiative

corrections to the Dalitz decay were also implemented based on the calculations of

Mikaelian and Smith [84]. The bremsstrahlung correction included a cutoff of mγγ > 1

MeV/c2. We again studied systematic effects of radiative corrections using simulations

with and without radiative corrections.



69

Chapter 6

Signal Extraction

6.1 Event Signature and Backgrounds to KL → e+e−e+e−

The event signature of a KL → e+e−e+e− event was a simple one. We searched for

two positively charged tracks and two negatively charged tracks all originating from

one vertex. Each track was required to have a cluster associated with it that deposited

nearly all of its energy in the CsI, defining it as an electron or a positron.

There were other decay modes, however, that had a similar event signature and could

have been mistaken as a signal event. There were two categories of background events

to KL → e+e−e+e− in this experiment. The first came from the decays KL → e+e−γ

and KL → γγ, with the photon(s) converting in the material of the detector (e.g.,

the vacuum window, the air gap and upstream of DC1). The other possible source of

background was the decay KL → πeνγ (radiative Ke3) with an internal or external

photon conversion. These backgrounds are discussed in detail in section 6.4.

6.2 Selecting Candidate KL → e+e−e+e− Events

The winter analysis runs used ranged from run number 8245-8910 and the summer

analysis runs from 10463-10970 (see figure 6.1).

The first set of selection criteria, or cuts, were for particle identification. We required

four charged tracks that reconstructed a good vertex and two y track pairs were allowed

to share hits (see discussion in 4.3). If one of the four tracks pointed down the beam

hole at the CsI, the event was kept (there was no cluster associated with this track).

These four tracks were required to be two electrons and two positrons. Therefore, the

E/P , the ratio of the cluster energy to the track momentum, of each of the four tracks
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Figure 6.1: Events vs. Run Number for signal mode events for both winter and summer
data taking conditions.
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Figure 6.2: E/P distribution for normalization events compared to Monte Carlo. The
spike at zero are the events with one track down the beam hole at the CsI.

was required to be within 0.9 and 1.1. The E/P distribution for normalization events

(see chapter 7) compared to Monte Carlo is shown in figure 6.2, for a higher statistics

comparison. Also, the sum of the charges of the four tracks was required to be zero.

The next set of cuts were made to ensure that the events fired the trigger; these are

also referred to as trigger verification cuts. An energy cut of 2 GeV was made on all

used clusters, including the ones that had a track pointing to it. The cluster energy

distribution is shown in figure 6.3 for normalization events compared to Monte Carlo.

Selection criteria on the maximum photon veto energy were also made. The maximum

RC energy and the maximum SCIA energy was required to be less than 0.5 GeV. The

maximum energy in the CA was required to be less than 5.0 GeV. The maximum photon

veto energy distributions are shown in figure 6.4 for normalization events compared to

Monte Carlo.

The next set of cuts were made to ensure the data quality and to reduce the level

of background events. The Z position of the charged vertex was required to be within
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Figure 6.4: Maximum Photon Veto energy distributions for normalization events com-
pared to Monte Carlo. The arrows indicate the position of the cut.
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Figure 6.5: Vertex Z distribution for signal events compared to Monte Carlo. The
arrows indicate the position of the cut.
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Figure 6.6: Kaon momentum distribution for signal events compared to Monte Carlo.
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Figure 6.7: Top: The distribution of PT
2 vs. Me+e−e+e− for candidate KL → e+e−e+e−

events. There are 441 events in the signal region defined by the box. Bottom: The
distribution of PT

2 vs. Me+e−e+e− for reconstructed Monte Carlo simulated events,
scaled to the data statistics. The filled circles represent the signal Monte Carlo and the
open circles represent the KL → πeνee Monte Carlo. The box defines the signal region
with an efficiency of 90%.
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Figure 6.8: Vertex χ2 distribution for normalization events compared to Monte Carlo.
The arrow indicates the position of the cut. In this variable, the discrepancy between
data and Monte Carlo is not understood but it is not significant (note the log scale!).
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Figure 6.9: Magnet offset χ2 distribution for normalization events compared to Monte
Carlo. The arrow indicates the position of the cut. In this variable, the discrepancy
between data and Monte Carlo is not understood but it is not significant (note the log
scale!).
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Figure 6.10: The Me+e−e+e− distribution after all cuts except the invariant mass cut.
The dots represent the data and the histogram represents the Monte Carlo simulation.
The arrows indicate an intentionally wide mass window chosen to retain the low-side
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in the lower mass region.



77

KTEV Event Display

Run Number: 8233
Spill Number: 34
Event Number: 5087709
Trigger Mask: d
All Slices

 -  10.00 GeV

 -   1.00 GeV

 -   0.10 GeV

 -   0.01 GeV

 -  Cluster

 -  Track

Track and Cluster Info
HCC cluster count: 4
 ID    Xcsi    Ycsi   P or E
T 1: -0.1702  0.2919   -7.11
C 3: -0.1665  0.3003    7.32
T 2: -0.0059 -0.1450  +24.74
C 4: -0.0079 -0.1402   25.41
T 3:  0.4956 -0.2177   -8.17
C 2:  0.4966 -0.2188    8.29
T 4:  0.6170  0.2017   +6.82
C 1:  0.6215  0.2014    6.85

Vertex: 4 tracks
   X        Y       Z
 0.1070  -0.0287  137.668
Chisq=59.87  Pt2v=0.000014

1.0 0.5 0.0 -0.5 -1.0

-1.0

-0.5

-0.0

0.5

1.0

100 120 140 160 180 200

-1.5

-1.0

-0.5

-0.0

0.5

1.0

1.5

100 120 140 160 180 200

-1.5

-1.0

-0.5

-0.0

0.5

1.0

1.5

8333

Figure 6.11: Event display of a KL → e+e−e+e− data event. The top figure shows the
face view of the CsI calorimeter. The bottom two figures show the X and Y views of
the KTeV detector. The energy, momenta and positions of the clusters and tracks are
printed in the top left corner. A typical KL → e+e−e+e− event has four tracks pointing
to four clusters with a good vertex. Note that the vertex position is inside the area of
one of the beams.
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the kinematic region of 95 − 155m. The total momentum of the kaon in the lab was

constrained to be between 25−215GeV/c2. These distributions are shown in figures 6.5

and 6.6 1. The transverse momentum squared 2, PT
2, of the kaon was required to be

less than 300(MeV/c)2. Figure 6.7 shows the distribution of PT
2 vs. Me+e−e+e− for

data and for reconstructed Monte Carlo events with all cuts but the invariant mass

and PT
2 cuts (see table 6.1). The box defines the signal region, keeping about 90%

of the events. The KL → πeνee Monte Carlo is also shown and is described later

in section 6.4. The reconstructed vertex χ2 was less than 300 and the χ2 of the offset

between track segments projected to the magnet bend plane was required to be less than

100 for all tracks. The vertex χ2 and magnet offset χ2 distributions for normalization

events compared to Monte Carlo are shown in figures 6.8 and 6.9, for a higher statistics

comparison. A cut on the minimum track separation at DC1 was required to be >

1 mm to get rid of background described later. Finally, the four body invariant mass,

Me+e−e+e− , was constrained to be within 30MeV of the neutral kaon mass. Figure 6.10

shows the Me+e−e+e− distribution after all cuts except the invariant mass cut.

To summarize, a list of all the cuts is shown in table 6.1. The treatment of back-

grounds is described in 6.4. In addition, an event display of a typical KL → e+e−e+e−

event is shown in figure 6.11.

6.3 Signal Events

There were 441 events in the signal region after all the cuts described in the previous

section. We summarize the total number of events observed in the KL → e+e−e+e−

decay in table 6.2.

1All KL → e+e−e+e− Monte Carlo in this chapter includes the KTeV implemented radiative cor-
rections and no form factor, unless otherwise noted.

2The square of the component of the total momentum of the daughter particles (e+e−e+e−) trans-
verse to the kaon line of flight.
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Table 6.1: KL → e+e−e+e− Selection Cuts

List of signal selection cuts Cut value
Number of tracks that make a vertex 4
Minimum cluster energy 2 GeV
E/P 0.9 - 1.1
Number of electrons (E/P above) 4
Number of e+e− 2e+, 2e−

Max RC, SCIA energy 0.5 GeV
Max CA energy 5.0 GeV
VTXZ 95− 155m
Pe+e−e+e− 25− 215GeV/c2

PT
2
e+e−e+e− < 300(MeV/c)2

vertex χ2 < 300
offmag χ2 < 100
Minimum track separation at DC1 > 1mm
Me+e−e+e− 468− 528MeV

Table 6.2: Total Number of Signal Mode Events

Total KL → e+e−e+e− candidate events 441
Winter events 257
Summer events 184
No beam hole events 377
Beam hole events only 64

6.4 Background Estimation in KL → e+e−e+e−

There were two important backgrounds to the decay KL → e+e−e+e− in this analysis.

The first we considered comes from the decays KL → e+e−γ and KL → γγ, with the

photon(s) converting in the material of the detector (eg, the vacuum window, the air

gap and upstream of DC1).

Another possible source of background came from KL → πeνγ (radiative Ke3) with

an internal or external photon conversion. If the pion was the particle that traveled

down the beam hole at the calorimeter then this could have “faked” a KL → e+e−e+e−

event. Therefore, this background was only considered for the beam hole events, events
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Table 6.3: KL → e+e−e+e− Conversion Background Estimate

Type of background bkgr before conversion cut bkgr after conversion cut
KL → e+e−γc (28± 2)% (0.84± 0.07)%
(single conversion)
KL → γcγc (1.2± 0.1)% (0.0013± 0.0006)%
(double conversion)

where one track has gone down the beam hole at the CsI.

6.4.1 Photon Conversions

As mentioned above, a source of background to KL → e+e−e+e− came from KL →
e+e−γ and KL → γγ when their daughter photons interacted with material in the

detector. The probability for such an occurrence was measured for our detector and is

(2.74± 0.11)× 10−3. The details can be found in [85].

When a photon externally converts to an e+e− pair the opening angle of the e+e−

pair is very small. We used this fact to remove the KL → e+e−γ and KL → γγ

backgrounds. By cutting out events that have a minimum track separation at DC1 of

much less than 1mm (the minimum distance two tracks can be separated to be in the

same drift cell) we significantly reduced this background. Since the tracking algorithm

allowed tracks to share y track pairs, we essentially threw out events that had tracks

closer than the resolution of our detector and the track separation variable was set to

zero.

The amount of conversion background in the data before and after the minimum

track separation cut from single and double conversions for KL → e+e−e+e− is sum-

marized in table 6.3. We estimated the total number of background events from this

source is 3.7± 0.3 events. These numbers were obtained as follows:

NKL→e+e−γc
= #KLdecays×BKL→e+e−γ × Pconversion ×Acceptance (6.1)

(for single conversions)
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Figure 6.13: Distribution of the minimum track separation at DC1. The histogram is
the KL → e+e−e+e− data and the dots are the MC after the conversion cut has been
made. The bottom plot is data over MC.
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NKL→γcγc = #KLdecays×BKL→γγ × P 2
conversion ×Acceptance (6.2)

(for double conversions)

These equations give the number of expected conversion events in the data. The cal-

culation of the number KL decays, or the total number of kaon decays, is discussed

further in section 7.4. From Monte Carlo studies signal loss due to the conversion cut

was (8.7± 0.2)%.

In figure 6.12, the top plot shows the distribution of the track separation at DC1 for

KL → e+e−γc MC (we forced the photon to externally convert at the vacuum window).

The middle plot show this distribution for KL → γcγc MC and the bottom plot is signal

MC. In figure 6.13 the histogram represents the KL → e+e−e+e− data and the dots

represent the MC after the conversion cut was made. The bottom plot is data over MC

and illustrates that the data and MC agree over the range shown.

6.4.2 Background from KL → πeνee

This background was considered only for events where one track traveled down the

beam hole at the CsI. If the pion was the particle down the beam hole at the calorimeter

then this could have been mistaken for a KL → e+e−e+e− event. The reconstructed

KL invariant mass with the pion misidentified as an electron should be smaller than

478MeV/c2; accidental activity and misreconstructions could move this decay into our

signal region. Since the branching ratio for KL → πeνee has not been measured we

studied the background from KL → πeνee by using the parent decay KL → πeνγ ,

whose branching ratio has been measured [86]. We simulatedKL → πeνee by converting

the γ from KL → πeνγ at the vertex at the generation stage. Also, since the branching

ratio for KL → πeνγ was measured only for Eγ > 30MeV and θe−γ > 20◦, we generated

KL → πeνγ events for the full Eγ and θe−γ range to obtain the scale factor to scale the

measured KL → πeνγ branching ratio. We then estimated:

B(KL → πeνee) = B(KL → πeνγ)× scale× αQED (6.3)

Figure 6.7 shows the KL → πeνee background as a band in PT
2 vs. Me+e−e+e− and

this background is seen in the lower mass region in figure 6.10. These figures contain
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Figure 6.14: The top plot shows the Me+e−e+e− distribution for data and the KL →
πeνee Monte Carlo excluding the beam hole events. The bottom plot shows the same
distribution for beam hole events only. This illustrates that this background needs to
be considered only for the beam hole events. The events between the arrows indicate
the accepted region.
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the entire KL → e+e−e+e− sample. Figure 6.14 illustrates that this background needs

to be considered only for the beam hole events. The top plot shows the Me+e−e+e−

distribution for data and the KL → πeνee Monte Carlo excluding the beam hole events.

The bottom plot shows the same distribution for beam hole events only. Using the above

approximation of B(KL → πeνee ) and the Monte Carlo simulation, the background

level due to KL → πeνee was estimated to be (0.11± 0.11)% or 0.5± 0.5 events.

6.4.3 Summary of All Backgrounds to KL → e+e−e+e−

We summarize the results of the last two sections on backgrounds in table 6.4.

Background to KL → e+e−e+e− :

Table 6.4: Summary of KL → e+e−e+e− Backgrounds

Type of background # of bkgr events after all cuts % bkgr after all cuts
Photon conversions 3.7 0.84
KL → πeνee 0.5 0.11
Total 4.2 0.95

6.5 Data vs. Monte Carlo

We have shown that the background levels are low, so we show here a few more data

vs. MC distribution comparisons. In particular, we compare distributions with the

KTeV implemented radiative corrections in the MC versus using photos. Figures 6.15

and 6.16 show the vertex Z distribution and kaon momentum distributions for KL →
e+e−e+e− events compared to Monte Carlo with photos. These figures should be

compared to figures 6.5 and 6.6 to see that there is reasonable agreement between both

sets of distributions.

A visible difference between the two methods of radiative correction implementation

shows up in the Me+e−e+e− distribution. Figures 6.17 and 6.18 show this distribution

for data and for Monte Carlo with photos and without any radiative corrections sim-

ulation, respectively. These figures should be compared to figure 6.10 to see that the
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Figure 6.15: Vertex Z distribution for signal events compared to Monte Carlo with
photos. Comparing this figure to figure 6.5 we see that the two Monte Carlos both do
an adequate job simulating the data in this variable.
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Figure 6.16: Kaon momentum distribution for signal events compared to Monte Carlo
photos. Comparing this figure to figure 6.6 we see that the two Monte Carlos both do
an adequate job simulating the data in this variable..
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Figure 6.17: The Me+e−e+e− distribution after all cuts except the invariant mass cut.
The dots represent the data and the histogram represents the Monte Carlo simulation
using photos. Comparing this figure to figures 6.10 and 6.18 we see that the KTeV MC
with radiative correction implemented was slightly better at simulating the radiative
tail compared to photos.
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Figure 6.18: The Me+e−e+e− distribution after all cuts except the invariant mass cut.
The dots represent the data and the histogram represents the Monte Carlo without
radiative corrections in the MC. Comparing this figure to figures 6.10 and 6.17 we
notice the absence of the low-side radiative tail in this MC simulation.
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KTeV MC with radiative correction implemented was slightly better at simulating the

radiative tail compared to photos. Therefore, for all analyses in this thesis, the KTeV

MC with implemented radiative corrections was used as the default MC simulation and

other simulations were used only for systematic studies.

6.6 Summary of KL → e+e−e+e− Signal Extraction

We observe a total of 441 KL → e+e−e+e− events with 4.2 background events. This low

background is mostly KL → e+e−γ events with photon conversions. This 441 event

sample is used in the form factor (chapter 8) and B(KL → e+e−e+e−) (chapter 9)

analyses. A smaller sub-sample of these events is used in the analysis of the angular

distribution (chapter 10).
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Chapter 7

Normalization Mode

7.1 Event Signatures and Backgrounds to KL → π0π0
Dπ0

D

The normalization mode decay KL → π0π0
Dπ0

D had a similar event signature to the

signal mode. The final state of the normalization mode is e+e−e+e−γγγγ. Again, we

looked for two positively charged tracks and two negatively charged tracks all originating

from one vertex and identified as electrons or positrons. In addition, we looked for four

extra clusters in the CsI with no match to a track. Since the KL decayed to three π0’s,

we searched for combinations of γγ and e+e−γ that reconstructed to the invariant mass

of the π0.

A source of background to the decay KL → π0π0
Dπ0

D was the decay KL → π0π0π0
DD

since both have the same eight particle final state of e+e−e+e−γγγγ. Another source of

background was the decay KL → π0π0π0
D when the photon from one of the non-Dalitz

π0’s converted in the detector material. These backgrounds are discussed in detail in

section 7.4.

7.2 Selecting Candidate KL → π0π0
Dπ0

D Events

To select KL → π0π0
Dπ0

D events, common cuts to the ones selecting KL → e+e−e+e−

were used, such as the particle identification, trigger verification and data quality cuts,

described in chapter 6. Again, the winter analysis runs used ranged from run num-

ber 8245-8910 and the summer analysis runs from 10463-10970 (see figure 7.1). The

normalization mode KL → π0π0
Dπ0

D selection criteria are listed in table 7.1 1.

The distribution of the Z position of the charged vertex and the total momentum

1δM2
2D and δM2

DD in table 7.1 is defined below in the background section 7.4.
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Figure 7.1: Events vs. Run Number for normalization mode events for both winter and
summer data taking conditions.
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Figure 7.2: Vertex Z distribution for normalization mode events compared to Monte
Carlo. The arrows indicate the position of the cut.

Kaon Momentum

0

200

400

600

800

1000

1200

1400

1600

1800

0 25 50 75 100 125 150 175 200 225 250
(GeV/c)

E
ve

nt
s 

pe
r 

2.
5 

G
eV

/c

Data
Normalization MC

Figure 7.3: Kaon momentum distribution for normalization mode events compared to
Monte Carlo. The arrows indicate the position of the cut.
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Figure 7.4: The distribution of PT
2 for candidate KL → π0π0

Dπ0
D events compared to

Monte Carlo. The arrow indicates the position of the cut.
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Figure 7.5: The Me+e−e+e−γγγγ distribution for the normalization mode events after all
cuts but the cut on the invariant mass. The dots are the data and the histogram is the
Monte Carlo simulation.
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Table 7.1: KL → π0π0
Dπ0

D Selection Cuts

Normalization Mode cuts Cut value
Number of tracks that make a vertex 4
Minimum cluster energy 2 GeV
E/P 0.9 - 1.1
Number of electrons (E/P above) 4
Number of e+e− 2e+, 2e−

Max RC, SCIA energy 0.5GeV
Max CA energy 5.0GeV
Number of photons 4
VTXZ 95− 155m
Pe+e−e+e−γγγγ 25− 215GeV/c2

PT
2
e+e−e+e−γγγγ < 800(MeV/c)2

vertex χ2 < 300
offmag χ2 < 100
Me+e−e+e−γγγγ 478− 518MeV
Minimum track separation at DC1 > 1 mm
δM2

2D < δM2
DD

Mγγ 127.5− 142.5MeV
Me+e−γ 127.5− 142.5MeV
Me+e−e+e− �= 127.5− 142.5MeV

of the kaon in the lab are shown in figures 7.2 and 7.3. Figure 7.4 shows the PT
2 dis-

tribution for normalization mode events. We also show the Me+e−e+e−γγγγ distribution

for the normalization mode events after all cuts but the cut on the invariant mass in

figure 7.5. These PT
2 and Me+e−e+e−γγγγ cuts define the KL → π0π0

Dπ0
D signal region

with an efficiency of 95%.

7.3 Normalization Events

There were 49089 KL → π0π0
Dπ0

D events after all the cuts described in the previous

section. We summarize the total number of events observed in the KL → π0π0
Dπ0

D

decay in table 7.2.
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Table 7.2: Total Number of Normalization Mode Events

Total KL → π0π0
Dπ0

D candidate events 49089
Winter events 27808
Summer events 21281

7.4 Background Estimation in KL → π0π0
Dπ0

D (Normalization Mode)

7.4.1 Crossover Background

The decay KL → π0π0
Dπ0

D (normalization) and the decay KL → π0π0π0
DD both have

the same eight particle final state of e+e−e+e−γγγγ. It was important to be able to

separate these two decay modes since their branching ratios differ only by roughly a

factor of four.

In order to distinguish between these two decays, first we needed to determine

how to pair the photons and electrons for each case by creating a χ2 based on the

π0 masses for each mode. We refer to this as the Mass-χ2 method. The objective

of this technique is to separate the two modes based on the best mass-χ2 for the

corresponding π0 decay hypothesis (two π0 → γγ and a π0 → eeee or one π0 → γγ

and two π0 → eeγ) . Then, comparing the best mass-χ2’s for each hypothesis provided

us with the information needed to decide if an event decayed as KL → π0π0π0
DD or as

KL → π0π0
Dπ0

D . Specifically, for KL → π0π0π0
DD :

δM2
DD =

(mγγ1 −mπ0)2

σ2
γγ

+
(mγγ2 −mπ0)2

σ2
γγ

+
(meeee −mπ0)2

σ2
eeee

(7.1)

For this mode, there are 3 different ways to pair up the photons. The pair with the

lowest δM2
DD is the one that was chosen. Then for KL → π0π0

Dπ0
D :

δM2
2D =

(meeγ1 −mπ0)2

σ2
eeγ

+
(meeγ2 −mπ0)2

σ2
eeγ

+
(mγγ −mπ0)2

σ2
γγ

(7.2)

This time there are 24 different ways to combine 2 eeγs and one γγ. Again, the pairing

with the lowest δM2
2D was chosen. The σ’s were obtained by fitting a Gaussian to the
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Figure 7.6: mγγ (top) and meeee (bottom) for KL → π0π0π0
DD Monte Carlo. The

top plot contains 3 entries per event and the bottom plot contains 1 entry per event.
Mispairings of the photons gives the top distribution a non-Gaussian structure.
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Figure 7.7: mγγ (top) and meeγ (bottom) for KL → π0π0
Dπ0

D Monte Carlo. The top
plot contains 6 entries per event and the bottom plot contains 16 entry per event.
Mispairings of the particles gives these distributions non-Gaussian structures.
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Figure 7.8: The best δM2
2D versus the best δM2

DD for KL → π0π0
Dπ0

D Monte Carlo
(top) and KL → π0π0π0

DD Monte Carlo (bottom). These figures show that δM2
2D is

small compared to δM2
DD for KL → π0π0
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D events and vice versa.
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DD and δM2

2D distributions for KL → π0π0
Dπ0
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Figure 7.12: Same as figure 7.11 above with a log scale. The dots represent the data and
the line represents a normalized combination of theKL → π0π0π0

DD andKL → π0π0
Dπ0

D

Monte Carlos, showing excellent agreement between data and Monte Carlo. The events
between the arrows indicate the region that is excluded.
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Figure 7.13: Me+e−e+e− : The top plot shows the data before the Mass-χ2 separation.
The bottom plot shows the KL → π0π0

Dπ0
D data after the Mass-χ2 separation. This

technique is very efficient in separating the KL → π0π0
Dπ0

D and KL → π0π0π0
DD modes.
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Figure 7.14: The distribution of the mγγ and meeγ invariant masses where the dots
represent the data and the line represents a normalized combination of the KL →
π0π0π0

DD and KL → π0π0
Dπ0

D Monte Carlos, showing agreement between data and
MC. The events between the arrows indicate the region that is included.
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central region of each of the π0 masses, when we plotted one entry for each combination,

in data. Figure 7.6 shows the distributions of mγγ and meeee for KL → π0π0π0
DD Monte

Carlo for all 3 possible combinations, while figure 7.7 shows the distributions of mγγ

and meeγ for KL → π0π0
Dπ0

D Monte Carlo for all 24 possible combinations.

The best pairing for each case was by now picked, however, the two decays were not

separated. Figure 7.8 shows the best δM2
2D versus the best δM2

DD for KL → π0π0
Dπ0

D

Monte Carlo (top) and KL → π0π0π0
DD Monte Carlo (bottom). These figures show that

δM2
2D is small compared to δM2

DD for KL → π0π0
Dπ0

D events and vice versa. Figures 7.9

and 7.10 further illustrate this point. Here we show the δM2
DD and δM2

2D distributions

forKL → π0π0
Dπ0

D andKL → π0π0π0
DD Monte Carlo simulations. The δM2 distribution

for the respective event type is peaked at low values whereas the other distribution is

flat. Therefore, to separate the two, we compared the lowest δM2
DD to the lowest δM2

2D.

Choosing the smaller of the two determined if an event was a KL → π0π0π0
DD or if it

was a KL → π0π0
Dπ0

D .

Figure 7.11 shows the distribution of the e+e−e+e− invariant mass. The solid line

represents the data, the dashed dotted line represents the KL → π0π0π0
DD MC and

the dashed line represents KL → π0π0
Dπ0

D MC. We see from this figure that the spike

at the π0 mass is the π0 → e+e−e+e−and the broad distribution under the spike is

from KL → π0π0
Dπ0

D events. Figure 7.12 also shows the distribution of the e+e−e+e−

invariant mass where the dots represent the data and the line represents a normalized

combination of the KL → π0π0π0
DD and KL → π0π0

Dπ0
D Monte Carlos, indicating

agreement between data and Monte Carlo. The region between the arrows is excluded.

In figure 7.13 the top plot shows the data before the Mass-χ2 separation. The bottom

plot shows theKL → π0π0
Dπ0

D data after the Mass-χ2 separation. These plots show that

this technique was very efficient in separating the KL → π0π0
Dπ0

D and KL → π0π0π0
DD

modes. We also required that the mγγ and meeγ reconstructed to the π0 mass as shown

in figure 7.14. Here the dots represent the data and the line represents a normalized

combination of the KL → π0π0π0
DD and KL → π0π0

Dπ0
D Monte Carlos, indicating

agreement between data and MC.

The background from a KL → π0π0
Dπ0

D event crossing over to a KL → π0π0π0
DD
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event, and vice versa, was calculated using Monte Carlo. We estimated this background

using the total number of kaon decays in our detector. This number was calculated

using the decay KL → π0π0
Dπ0

D
2. The number of kaon decays, NK (“Flux”), was then

calculated using:

NK =
Nobserved

B ×Acceptance
(“Flux”). (7.3)

The branching ratio of KL → π0π0
Dπ0

D from PDG is (8.98 ± 0.49) × 10−5. The total

number of kaon decays was (2.63± 0.02stat ± 0.14syst) × 1011. The systematic error

comes from the PDG error in the branching ratio.

We used equation 7.3 above and the value for the total number of kaon decays to

find out how many crossover background events there were in the total data. Also,

to estimate the level of this background, the PDG value of the branching ratio of

π0 → e+e−e+e−was used, (3.14± 0.30)× 10−5 [10].

We find that the percentage of KL → π0π0π0
DD events mistaken as a KL → π0π0

Dπ0
D

event was about (0.04±0.01)% or (21±3) events after the Mass-χ2 selection. Therefore,

this background was negligible after all cuts. The loss of KL → π0π0
Dπ0

D events due to

Mass-χ2 selection and π0 mass cuts was (14.62± 0.06)%.

7.4.2 Photon Conversions

If in the decay KL → π0π0π0
D the photon from one of the non-Dalitz π0’s converted

in the vacuum window this would have shown up as background to KL → π0π0
Dπ0

D .

Again, to remove the photon conversion background we cut on the separation of tracks

at DC1. We cut out events that had a minimum track separation of less than 1mm to

remove this background.

Only single conversions from the KL → π0π0π0
D decay were considered since, we

will show, the level of this background was very small and double conversions (from

KL → π0π0π0 where two photons from different π0’s convert) was even smaller and

essentially negligible. To obtain the number of expected conversion events in KL →

2A very tight cut on the minimum track separation was used to remove essentially all of the conver-
sion background (the dominant background toKL → π0π0

Dπ0
D ). See section 7.4.2.
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Figure 7.16: Distribution of the minimum track separation at DC1. The histogram is
the KL → π0π0

Dπ0
D data and the dots are the MC after the conversion cut has been

made. The bottom plot is data over MC. There is residual background visible in the
first bin.
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Table 7.3: KL → π0π0
Dπ0

D Conversion Background Estimate

Type of bkgr bkgr before conv. cut bkgr after cut # bkgr events after cut
KL → π0π0π0

D (32± 2)% (1.7± 0.1)% (844± 66)
(single conversion)

π0π0
Dπ0

D we used an equation similar to equation 6.1, with the relevant acceptance and

branching ratio. The conversion background estimation for normalization mode events

is summarized in table 7.3.

The fraction of normalization mode events lost was obtained from Monte Carlo

studies and was found to be about (8.97 ± 0.04stat)%. Therefore, the 1 mm cut on

minimum track separation at DC1 was chosen to optimize background rejection and

to minimize signal loss. As a result of cutting on the minimum separation of tracks at

DC1 the level of conversion background was reduced to a tolerable low level.

In figure 7.15 the top plot shows the distribution of the track separation at DC1

for KL → π0π0
Dγγc MC (one non-Dalitz π0 converted). The bottom plot shows the

same distribution for KL → π0π0
Dπ0

D MC. In figure 7.16 the histogram represents the

KL → π0π0
Dπ0

D data and the dots represent the MC after the conversion cut was made.

The bottom plot shows the ratio of data over MC and shows reasonable agreement,

except for where we know we are letting in about 2% background.

7.4.3 Summary of All Backgrounds (Normalization Mode)

We summarize the results of the last two sections in table 7.4.

Table 7.4: Summary of KL → π0π0
Dπ0

D Backgrounds

Type of background # events after all cuts % bkgr after all cuts
Cross over 21 0.04
Conversion 844 1.7
Total 865 1.76
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7.5 Normalization Mode Summary

We observe a total of 49089 KL → π0π0
Dπ0

D events with 865 background events. This

low background is mostly KL → π0π0π0
D events with a photon conversion. In chapters 6

and 7, we show that the normalization mode events have reasonable agreement in the

data and Monte Carlo comparisons for many distributions.

The reader should keep in mind that these events are used only in the B(KL →
e+e−e+e−) analysis (see chapter 9). In chapter 9, we see that although KL → π0π0

Dπ0
D

is an ideal normalization mode for KL → e+e−e+e− , B(KL → π0π0
Dπ0

D) is mea-

sured to 5.5% of itself [10] and thus dominates the systematic uncertainty for B(KL →
e+e−e+e−). However, this uncertainty is due to an external systematic effect (i.e.,

external to KTeV).
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Chapter 8

Form Factor Analysis

8.1 The KL → e+e−e+e− Form Factor

This chapter discusses the first measurement of the KLγ
∗γ∗ form factor using the decay

KL → e+e−e+e− . The details of this form factor were discussed in chapter 1; we present

here a summary of that discussion. The KL → e+e−e+e− form factor illuminates us of

the internal structure of the long lived neutral kaon and gives us information about the

KL → γ∗γ∗ vertex. The decay KL → e+e−γ probes the KL → γγ∗ form factor and has

been parametrized by Bergström, Massó, and Singer [1]. The expression for the form

factor that comes from the BMS model is [1],[32]:

f(x) =
1

1− 0.418x
+

2.3αK∗

1− 0.308x

[
4
3
− 1

1− 0.418x

− 1
9(1− 0.405x)

− 2
9(1− 0.238x)

]
. (8.1)

In this equation αK∗ is the parameter describes the relative strength of an intermediate

pseudoscalar decay amplitude and a vector meson decay amplitude with x defined as

Mee
2/MK

2. Since there is no theoretical model of the form factor in KL → e+e−e+e−

we have applied the model for the decay KL → e+e−γ to KL → e+e−e+e− . In

KL → e+e−e+e− , there are two internal pair productions to e+e− so we use a factorized

expression for the form factor:

F (x1, x2) = f(x1) · f(x2). (8.2)

We also fit for the form factor parametrized by D’Ambrosio, Isidori and Portolés

(DIP):

f(q12, q22) = 1 + αDIP

[
x1

x1 − 2.4
+

x2
x2 − 2.4

]
+ βDIP

x1x2
(x1 − 2.4)(x2 − 2.4)

,(8.3)
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where q = Mee, and αDIP , βDIP are arbitrary real parameters for a ρ form factor. This

parametrization of the KL → γ∗γ∗ process is relatively model independent.

Another model independent form factor we fit for has a simple linear form:

f(x) = 1 + αT aylor · x, (8.4)

where x = Mee
2/MK

2. Again, we use a factorized expression as in equation 8.2, since

we have two e+e− pairs in the final state.

8.1.1 Fitting for the BMS Form Factor

We first inspected the distribution x1 + x2 to visually ascertain the presence of a form

factor. Figure 8.1 shows the x1+ x2 distribution for data (dots) and Monte Carlo with

f(x) = 1 or a flat form factor and KTeV MC radiative corrections [83]. This plot shows

that the overall shapes of the data and MC distributions are different, indicating the

presence of a non flat or pointlike form factor in the KL → e+e−e+e− data. The data

in this analysis included the cuts as discussed in chapter 6.

To find the value of αK∗ for our KL → e+e−e+e− data we generated several different

correlated Monte Carlo samples with different values of αK∗ and for each sample formed

a χ2 with the data. Our measurement of αK∗ was the one that gave the minimum χ2.

The statistical error came from a change of one unit in the minimum χ2. However,

a slightly better technique was to use a likelihood analysis which depended on all

kinematic variables (not just x1 and x2) and was also independent of binning. The

details of this technique is discussed in appendix A. The log likelihood method was

taken as our default method and the χ2 method was used as a cross-check.

Radiative corrections could potentially have a large effect on the form factor mea-

surement, since the Mee distribution is the distribution most sensitive to the form

factor. Therefore, our final measurement excluded radiative corrections since the ra-

diative corrections currently available for KL → e+e−e+e− does not simulate all higher

order terms which could affect this measurement. Hence, we measured an effective

parameter, αeff
K∗ which takes into account both the form factor and radiative effects.

This effect of radiative corrections on the form factor has been observed before in the
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Figure 8.1: This plot shows the distribution of x1 + x2. In this plot the dots represent
the data and the histogram represents the MC with f(x) = 1 or a pointlike form factor
and KTeV MC radiative corrections included. The overall shapes of the data and
MC distributions are different indicating the presence of a non flat form factor in the
KL → e+e−e+e− data. This distribution is used for fitting for αK∗ using a Poisson χ2.
Here, the χ2 between data and MC is 7.3 out of 3 dof.
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Figure 8.2: The distribution of x1 + x2. In this plot the dots represent the data and
the histogram represents the MC with f(x) = 1 or a pointlike form factor and radiative
corrections are excluded. Here, the χ2 between data and MC is 11.2 out of 3 dof.
Comparing this to figure 8.1 shows that radiative corrections affect this distribution.
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decay KL → e+e−γ. The recent measurement of αeff
K∗ = −0.15 ± 0.06stat ± 0.02syst

for the decay KL → e+e−γ [42] also ignores radiative corrections. Including radiative

corrections to KL → e+e−γ, αK∗ = −0.36±0.06stat±0.02syst [42]. However, the effect

of radiative corrections on αK∗ could well be different in the two modes. Figure 8.2

shows the x1 + x2 distribution for data (dots) and Monte Carlo with f(x) = 1 or a

flat form factor and no radiative corrections. Comparing this to figure 8.1 shows that

radiative corrections affect this distribution.

Before extracting the answer from the data, 10 different MC samples the size of the

data were analyzed and fit for αK∗. A known value of αK∗ equal to -0.36 (as in the

measurement in [42]) was simulated in these MC data sets, so fitting for the parameter

helped us evaluate biases, if any, and verify the size of the statistical error. Figure 8.3

shows the fit value of αK∗ with the statistical error from the fit for the 10 samples.

A fit to a line gives −0.426 ± 0.050, so we reproduce the value of αK∗ put in the MC

to within around 1σ. We also know from this figure that our statistical error for αK∗

will be approximately 0.16. Figure 8.4 shows the distribution of the fit value minus the

expected value of -0.36. This distribution is then fit to a Gaussian. The mean of this

distribution is 0.01 ± 0.05, indicating no bias at the level of expected statistical error

from data. Both plots show how well this technique reproduced the expected value of

-0.36.

Now that we have shown that we are able to measure αK∗ without any biases and

know the order of our statistical error, we fit the data. Our result from the data is

shown in figures 8.5 and 8.6. These figures show the log likelihood as a function of αK∗

for the KL → e+e−e+e− data. The MC terms in the likelihood were calculated with

and without radiative corrections. The range of values of the parameter is from −0.8
to 0.6. Maximizing the log likelihood gives a value for αK∗ of 0.03± 0.17stat and αeff

K∗

of −0.14± 0.16stat, with and without radiative corrections in the MC, respectively. A

cross-check of these measurements using the χ2 method can be found in appendix B.
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αK* vs sample number
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Figure 8.3: This plot shows the fit value of αK∗ from the log likelihood with the
statistical error from the fit for the 10 MC samples the size of data. The MC samples
contain a value of αK∗ of -0.36 and we fit −0.43± 0.05 (this is a factor of

√
10 less than

our data statistics error). This indicates no significant bias in the technique at the level
of expected statistical error from data.

fit value - (-0.36)

Distribution for 10 samples

0

1

2

3

4

5

6

7

8

9

10

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

ID
Entries
Mean
RMS

            100
             10

-0.2857E-01
 0.1245

 0.5540    /     1
Constant   4.108   2.459
Mean -0.9754E-02  0.5094E-01
Sigma  0.1377  0.8645E-01

Figure 8.4: The distribution of the fit value from the log likelihood minus the expected
value of -0.36. This distribution is then fit to a Gaussian. We see the mean centered
about zero and the sigma (RMS) is an indication of our expected data statistics error.
This indicates that there is no bias in the technique at the level of expected statistical
error from data.
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Figure 8.5: This plot shows the log likelihood as a function of αK∗ for the KL →
e+e−e+e− data. Radiative corrections are included in the MC. Maximizing the log
likelihood gives a value for αK∗ of 0.03± 0.17stat.
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Figure 8.6: This plot shows the log likelihood as a function of αeff
K∗ for the KL →

e+e−e+e− data. Radiative corrections have been excluded in the MC. Maximizing the
log likelihood gives a value for αeff

K∗ of −0.14± 0.16stat.
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8.1.2 Fitting for the DIP Form Factor

As mentioned in chapter 1, in KL → e+e−e+e− , only the first order term in the DIP

form factor parametrization (αDIP) is relevant, as can be seen in equation 8.3. Due to

the dominance of low Mee, we do not expect to be sensitive to the second order term

(βDIP).

Neglecting the second order term we get the relation αDIP = −1+2.8 αK∗ , where αK∗

is the BMS parameter described above. Therefore, our expected measurement of αDIP,

neglecting the βDIP term, using our measurement of αK∗(αeff
K∗) above is −0.9(−1.1)

using the log likelihood method. Figures 8.7 and 8.8 show the fit results from the

data using the log likelihood method with and without radiative corrections in the MC.

The log likelihood results gives αDIP = −0.9± 0.5 and αeff
DIP = −1.1± 0.6 as expected

from the αK∗ and αeff
K∗ measurements. The results using the χ2 method are given in

appendix C.1. Comparing the results of the two methods, we see that the log likelihood

method is a slightly more sensitive method as we saw before when fitting for the BMS

form factor. In appendix C.2 we present studies of the DIP form factor including the

quadratic term βDIP.

8.1.3 Fitting for a Linear Form Factor

A first order Taylor expansion of the KL → e+e−e+e− form factors yields a generic

linear form factor of the form (1+αTaylor(x1+x2)) as described in chapter 1. We obtain

the approximate relations αTaylor ≈ 0.42− 1.2αK∗ ≈ −αDIP/2.4. Our expectations and

measurements of αTaylor are summarized in tables 8.1 and 8.2 respectively. We see

that our measurements of αTaylor and αeff
Taylor agree with the expected values from our

BMS and DIP form factor measurements. The results using the χ2 method are given

in appendix D.

8.1.4 Sources of Systematic Error for the KL → e+e−e+e− Form Factor

We are taking the measurement of the BMS form factor parameter as our standard

result, therefore, all the studies of the sources of systematic error for the form factor
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Log Likelihood vs. αDIP
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Figure 8.7: This plot shows the log likelihood as a function of the DIP form factor
parameter αDIP (with βDIP = 0.0) for the KL → e+e−e+e− data. Maximizing the log
likelihood gives a value for αDIP of −0.9± 0.5stat.

Log Likelihood vs. αeffDIP
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Figure 8.8: This plot shows the log likelihood as a function of the DIP form factor
parameter αeff

DIP (with βDIP = 0.0) for the KL → e+e−e+e− data. Maximizing the log
likelihood gives a value for αeff

DIP of −1.1± 0.6stat.



116

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12

Figure 8.9: Systematic checks for αK∗. The data was split into two different samples and
fit for the parameter. We also fit for the parameter using different MC for acceptance
correction. The horizontal lines show the size of the statistical error of our measurement
of αK∗.
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Table 8.1: Expected values of αTaylor from measurements of αK∗ and αDIP using the
log likelihood method.

Expected αTaylor and αeff
Taylor

αK∗ 0.38
αDIP 0.35
αeff

K∗ 0.58
αeff
DIP 0.45

Table 8.2: Measurements of αTaylor and αeff
Taylor using the log likelihood method. These

measurements agree with the expected values from our BMS and DIP form factor
measurements seen in table 8.1.

log likelihood method
αTaylor 0.34± 0.27
αeff
Taylor 0.50± 0.27

αK* vs sample number (PHOTOS MC)
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Figure 8.10: This plot shows the fit value of αK∗ from the χ2 method with the statistical
error from the fit for the 7 MC samples the size of data that contain photos. The MC
samples were generated with αK∗ of 0.0. The MC comparison included photos. We
observe an unexplained bias of -0.27 units in αK∗.
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αK* vs sample number
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Figure 8.11: This plot shows the fit value of αK∗ from the χ2 method with the statistical
error from the fit for the 7 MC samples the size of data that contain photos. The
MC samples were generated with αK∗ of 0.0. The MC comparison included radiative
corrections using KTeV MC. The difference in this fit for αK∗ is about 80% of the
statistical error of our measurement.
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Figure 8.12: This plot shows the fit of αK∗ with the statistical error from the fit for
the 10 samples using χ2. The MC samples contain a value of αK∗ of -0.36 and were
generated with KTeV MC radiative corrections. The MC comparison included radiative
corrections using photos. We observe a bias of -0.42 units in αK∗ . Compare this figure
to figure B.1, where we have used KTeV MC radiative corrections in the χ2 comparison.
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were performed assuming this parametrization. Various systematic checks were done

by splitting the data up into different samples. In figure 8.9 we see the fits for αK∗

when we looked at the winter vs. the summer data; events when one of the four tracks

went down the beam hole at the CsI and when no tracks go down the beam hole at

the CsI; events that came from the east beam vs. the west beam; events that came

from the top of the beam vs. the bottom of the beam; events where we have taken the

minimum radial distance of a track projected at the CsI. These plots also show how

these parameters vary for different Monte Carlos used in the acceptance correction.

For the purposes of systematic studies, we analyzed a MC sample generated without

radiative corrections and a MC with no accidental overlays and no radiative corrections.

All the error bars in figure 8.9 are statistical. All points in this figure are consistent

with each other. This gives us confidence that the systematic uncertainty is not larger

than the statistical error.

Next different variables were intentionally scaled thus inducing artificial slopes in

data vs. MC comparisons which were used to assign the systematic error. Table 8.3

shows how systematic errors were assigned by scaling. Also, the track momenta and the

cluster energies were smeared to get a better understanding of how the uncertainty in

the detector (DC, CsI) resolutions affect the fit to αK∗. We found that the uncertainties

in the detector resolutions do not affect the fit to the form factor parameter.

To further study the issue of radiative corrections we generated 7 samples of MC

the size of our data sample with photos and with αK∗ = 0.0. We then fit for αK∗

to see how well we can extract what we put in. Again, this gives a rough indication

of any systematic biases. For simplicity we used the χ2 method in these studies. The

fit in figure 8.10 indicates a bias of −0.27 units in αK∗ . This unexplained bias is most

likely due to the fact that that since photos is a package that was added on to the

KTeV MC, the matrix element [24] was calculated in our MC and after the event was

generated, photos modified the e± four-vectors if a photon was radiated. The KTeV

MC radiative corrections simulation, on the other hand, calculated the matrix element

for all the different diagrams it is capable of simulating, tree-level [24] and radiative

[83], and then the event was generated (similar to what is found in [84]). We were not
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χ2 per 3 dof vs αK*
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Figure 8.13: This plot shows the Poisson χ2 as a function of αK∗ for the KL →
e+e−e+e− data. Radiative corrections using photos are included in the MC. Mini-
mizing the χ2 gives a known biased value for αK∗ of −0.40± 0.19stat.

Table 8.3: Form Factor Systematic Studies

Distrib. orig. slope ∆αK∗/∆ slope Systematic error
% per quantity % per quantity assigned

VTXZ (m) −0.31± 0.29 0.12/0.30 0.12
ENERGCS sum (GeV) -0.14+/-0.16 -0.07/0.13 0.09
TRKP sum (GeV) −0.40± 0.21 -0.01/0.29 0.01
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alphak* vs sample number
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Figure 8.14: This plot shows the fit value of αK∗ from the log likelihood with the
statistical error from the fit for the 7 MC samples the size of data that contain photos.
The MC samples also have αK∗ of 0.0. The difference in this fit for αK∗ is about 60%
of the statistical error of our measurement.

concerned with this bias since all other studies resulted in consistent answers. We also fit

these same 7 samples using the KTeV MC radiative corrections in the χ2 comparison;

the result is shown in figure 8.11. Again we observe a bias of −0.16 units in αK∗.

Finally, we fit our 10 original MC samples the size of data that were generated using

the KTeV MC radiative corrections with a value of αK∗ = −0.36 and used photos

in the MC for the χ2 comparison; the result is shown in figure 8.12. We observe a

bias of -0.42 units in αK∗ . Compare this figure to figure B.1, where we have used

KTeV MC radiative corrections in the χ2 comparison. We fit our data using photos

in the MC in the χ2 comparison as seen in figure 8.13. Removing the −0.27 unit bias,

the difference between this measurement and the one with the KTeV MC radiative

corrections (αK∗ = −0.02 ± 0.20) is 0.11 ± 0.10, where the error is the uncorrelated

error due to MC statistics in the two results.

These studies with photos verify the sensitivity of the form factor to radiative cor-

rections in general. This further justifies the measurement of an effective form factor,

which parametrizes both the form factor and radiative effects. This parametrization
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Table 8.4: Table of Errors for Form Factor Measurements. Recall that αeff
K∗ incorporates

radiative effects.

Error in αeff
K∗ in αK∗

Statistics 0.16 0.17
Systematic:

Detector Acceptance/Spectrum 0.15 0.15
Detector Resolution - -
Time Dependence - -
Accidentals - -
Radiative Corrections - 0.11
total internal systematic 0.15 0.18

eliminated the need for assigning systematic error due to the uncertainty in the radiative

corrections. However, we estimated the systematic error of radiative corrections on our

measurement of αK∗ of 0.03 (log likelihood method), when radiative corrections were

included. We also fit the photos generated samples the size of data with αK∗ = 0.0

using the KTeV MC radiative corrections in the log likelihood MC terms; the result is

shown in figure 8.14. The difference in this fit for αK∗ is about 60% of the statistical

error of our measurement. This difference of 0.11 is assigned as a conservative estimate

of the systematic error of αK∗ due to radiation.

We summarize the errors on αeff
K∗ and αK∗ in table 8.4.

8.1.5 Results of the KL → e+e−e+e− Form Factor

We measured

αeff
K∗ = −0.14± 0.16stat ± 0.15syst, (8.5)

in KL → e+e−e+e− , where αeff
K∗ incorporates the BMS parameterization of the form

factor and radiative effects. This result excludes radiative corrections in the MC.

Figure 8.15 shows the x1 + x2 distribution for data (dots) and Monte Carlo with

αeff
K∗ = −0.14, our measured value. This shows better agreement with the data com-

pared to figure 8.2, with a pointlike form factor.
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Disentangling radiative corrections, we extract the pure form factor measurement

αK∗ = 0.03± 0.17stat ± 0.18syst. (8.6)

We also show the x1+x2 distribution for data (dots) and Monte Carlo with αK∗ = 0.03,

our measured value including radiative corrections in figure 8.16. This also shows

better agreement with the data compared to figure 8.1, with a pointlike form factor

and radiative corrections included in the MC.

This is the first measurement of the KLγ
∗γ∗ form factor using KL → e+e−e+e− .

For reference, the PDG world average of the KLγγ
∗ form factor using KL → e+e−γ is:

αK∗ = −0.33± 0.05.

Our result is in agreement with the recent measurement of αeff
K∗ = −0.15 ± 0.06stat ±

0.02syst for the decay KL → e+e−γ [42], also obtained by ignoring radiative corrections.

Including radiative corrections to KL → e+e−γ, αK∗ = −0.36±0.06stat±0.02syst [42].

As mentioned before, the effect of radiative corrections on αK∗ could be different in the

two modes.
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Figure 8.15: This plot shows the distribution of x1 + x2. In this plot the dots are the
data and the histogram is the Monte Carlo with αeff

K∗ = −0.14, our measured value.
This shows better agreement with the data compared to figure 8.2, where a pointlike
form factor was assumed. Here, the χ2 between data and MC is 5.1 out of 3 dof, a
much better agreement than in figure 8.2.
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Figure 8.16: Same distribution as in figure 8.15 above. In this plot the dots are the
data and the histogram is the Monte Carlo with αK∗ = 0.03, our measured value. This
shows better agreement with the data compared to figure 8.1, where a pointlike form
factor was assumed. Here, the χ2 between data and MC is 5.8 out of 3 dof, a much
better agreement than in figure 8.1.
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Chapter 9

Branching Ratio Analysis

9.1 The Branching Ratio of KL → e+e−e+e−

To measure the KL → e+e−e+e− branching ratio, the events were normalized to KL →
π0π0

Dπ0
D . The normalization mode was used to measure how many total KL decays

occurred in the KTeV experiment. The branching ratio is then defined as the ratio of

the number of times the KL decayed to e+e−e+e− to the total number of KL decays.

Since we now have clean signal and normalization samples with minimal background

and have shown that the data and Monte Carlo matches at a fair level it is time to

measure the branching ratio of this decay. The KL → e+e−e+e− branching ratio is

given by:

B(KL → e+e−e+e−) = B(KL → π0π0
Dπ0

D)
NKL→e+e−e+e−

NKL→π0π0
Dπ0

D

AKL→π0π0
Dπ0

D

AKL→e+e−e+e−
, (9.1)

where N stands for the number of events for that decay with background subtracted

and A is the acceptance of that decay from Monte Carlo.

The number of observed signal events in the entire E799II data set is 441 with

4.2 background events and the number of normalization events (KL → π0π0
Dπ0

D ) is

49089 with 865 background events. The signal acceptance is (4.51±0.05stat)% and the

normalization acceptance is (0.206 ± 0.001stat)%, where the errors are due to limited

MC statistics. The signal acceptance has been calculated without radiative corrections

and with αeff
K∗ = −0.14, our measured effective form factor. These numbers yield:

B(KL → e+e−e+e−) = (3.72± 0.18data stat ± 0.04mc stat)× 10−8. (9.2)



126

9.1.1 Systematic Error Estimates for B(KL → e+e−e+e− )

QED Radiative Corrections and Form Factor

When the signal acceptance was calculated with radiative corrections and with αK∗ =

0.03, our measured form factor the branching ratio becomes:

B(KL → e+e−e+e−) = (3.64± 0.17data stat ± 0.05mc stat)× 10−8.

This number is different from the value above (equation 9.2) by 0.08 ± 0.06 in units

of 10−8 of the branching ratio, where the error is the uncorrelated error between the

two values. The B(KL → e+e−e+e− ) as a function of αeff
K∗ and αK∗ is shown in

figures 9.1 and 9.2. To estimate the systematic error due to αeff
K∗ on the branching

ratio measurement above 9.2, we varied αeff
K∗ by our measured uncertainty of ±0.23.

This yielded a systematic uncertainty in the KL → e+e−e+e− branching ratio of 0.9%

or 0.03 × 10−8, due to αeff
K∗ , the combined effect of the uncertainty in the radiative

corrections and the form factor.

We also show that the addition of final state bremsstrahlung in the Monte Carlo

simulation does not affect this result significantly. As previously described, until re-

cently, the photos package [82] was the only simulation we had for radiative corrections

for the signal mode. We also had an internal simulation package [83]. The differences

between the two simulations are described in section 5.6. In the case of generating

normalization mode MC with radiative corrections, we also had a choice of using the

photos package or using the the QED calculated radiative corrections [84] again de-

scribed in section 5.6. Using data versus MC studies, we showed that both Monte

Carlo simulations of the radiative corrections simulated the data well (see chapter 6).

Table 9.1 shows the B(KL → e+e−e+e− ) with and without radiative corrections in

the MC acceptance and that the results are consistent. In addition, all MC samples

used in this study were generated with a pointlike form factor, f(x) = 1. There is a

(0.05± 0.08)× 10−8 difference between photos and KTeV MC radiative corrections, a

(0.08± 0.09)× 10−8 difference between KTeV MC radiative corrections and no radia-

tive corrections, and a (0.03±0.09)×10−8 difference between photos and no radiative

corrections.
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Figure 9.1: B(KL → e+e−e+e− ) ×10−8 vs. αeff
K∗. A fit to a straight line is shown. The

errors on P1 and P2 (intercept and slope, respectively) should be ignored; we assumed
no errors on the points since they are all correlated.
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Figure 9.2: B(KL → e+e−e+e− ) ×10−8 vs. αK∗. A fit to a straight line is shown. The
errors on P1 and P2 (intercept and slope, respectively) should be ignored; we assumed
no errors on the points since they are all correlated.
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Table 9.1: Branching Ratio with and without Radiative corrections in MC Acceptance.
The MC errors in this table are uncorrelated. These results are consistent.

MC used for Acceptance B (×10−8) data stat MC stat
KTeV MC rad corr 3.73 0.18 0.06

photos 3.78 0.18 0.06
No rad corr 3.81 0.18 0.07

“Two-part” Studies

To have a global understanding of the total internal systematic error we split the data

into two subsets using various criteria and compared the branching ratios for the two

subsets. Examples of such criteria are two time periods, east beam vs. west beam, etc.

In cases where it was necessary to find the midpoint of the distribution the normal-

ization mode, KL → π0π0
Dπ0

D , was used. Neglecting correlations between the various

criteria, the spread in the different measurements is an indicator of the systematic

spread. We used this technique as a diagnostic tool to get a qualitative understanding

of the systematic effects.

From figures 9.3 through 9.6 we see that the spread is consistent with the statistical

error. Figures 9.3 and 9.5 show the measurement for each subset versus the criteria.

Figures 9.4 and 9.6 show the spread of the measurements. This gives confidence that

the systematic error of the branching ratio is small, on the scale of the statistical error,

due to detector understanding.

In addition to splitting the data up as just described, it was also split between the

winter and summer data and no significant change in the branching ratio was seen. The

data was also split into events where no tracks were allowed to go down the beam hole

and events where one track was required to go down the beam hole. Again, there was

no significant difference in the branching ratio between these two subsets of data.
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such criteria are two time periods, east beam vs. west beam, etc. In cases where
was necessary to find the midpoint of the distribution the normalization mode, KL →
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that the systematic error of the branching ratio is small, on the scale of the statistical
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Table 9.2: Branching Ratio Systematic Studies

Distrib. original slope slope change B % syst error
% per quantity % per quantity ×10−8 assigned

(arbitrary)
- - - 3.73 -
TRKP fudge (GeV) −0.047± 0.063 0.049 3.78 1.7
ENERGCS fudge (GeV) 0.043± 0.019 0.051 3.67 1.3
VTXZ (m) 0.052± 0.037 0.178 3.78 0.39

Specific Systematic Studies

Next, we artificially scaled (fudged) the data and artificially worsened the detector

resolution (smeared) in different variables thus inducing slopes in data versus MC com-

parisons and assigned systematic error to each of these effects. As anticipated from the

two-part studies described above the systematic effects appear to be negligible and are

listed in table 9.2. Since the normalization mode, KL → π0π0
Dπ0

D , has more than a

factor of 100 times statistics of KL → e+e−e+e− , data versus MC studies were done

using this mode.

The uncertainty in the σ’s in the Mass-χ2 procedure for selection of double-Dalitz

events versus double-single-Dalitz events were also considered as a source for systematic

error. The charged σ was changed by ± 10% of itself while leaving the neutral σ’s alone

and vice versa. No significant change in the branching ratio was observed.

The track momenta and the cluster energies were smeared to get a better un-

derstanding of how the uncertainty in the detector (DC, CsI) resolutions affect the

branching ratio measurement. These studies yield negligible changes and thus do not

contribute to the systematic error.

Finally, the KL → e+e−e+e− branching ratio was measured using Monte Carlo

without accidental overlays. They change the answer by less than one statistical sigma.

This is not a significant change and therefore no systematic error is assigned due to

accidentals.
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9.1.2 Summary of Branching Ratio of KL → e+e−e+e− Results

List of Errors

The contributions to the B(KL → e+e−e+e− ) error are summarized in table 9.3.

Table 9.3: Table of Branching Ratio Errors

Error %
Data Statistics 4.8
MC Statistics 1.1
Systematic:

Detector Acceptance/Spectrum 2.2
Detector Resolution -
Time Dependence -
Accidentals -
total internal systematic 2.2

Rad corr and FF 0.9
PDG error on π0

D 5.5

Results

Using the errors in the table in the previous section (combining MC statistics, internal

systematics and radiative corrections), the branching ratio of KL → e+e−e+e− is,

B(KL → e+e−e+e−) = (3.72± 0.18stat ± 0.10syst ± 0.20norm)× 10−8,

where “norm” refers to the measurement uncertainty in the normalization branching

ratio [10]). This result is consistent with the theoretical prediction 3.65× 10−8 [24] and

the most precise published experimental result (3.96± 0.78stat ± 0.32syst)× 10−8 [38].

The measurement of this branching ratio is the most precise so far.
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Chapter 10

Angular Distribution Analysis

10.1 KL → e+e−e+e− Angular Distribution

This section describes how we studied possible CP violating effects in the decay KL →
e+e−e+e− by studying φ, the angle between the planes of the two e+e− pairs. When

we introduce CP violation the decay rate of KL → e+e−e+e− can be written as

dΓ(KL → e+e−e+e−)
dφ

∝ (1 + βCP cos(2φ) + γCP sin(2φ)) (10.1)

with

βCP = −1− |εr|2
1 + |εr|2B ≈ B , γCP =

2Re(εr)
1 + |εr|2C ≈ 2Re(εr)C, (10.2)

where B is 0.20, ε measures CP violation in mixing, constant r (which is approximately

unity) is the ratio of the amplitudes of K1 and K2 to decay to e+e−e+e− and the

constant C depends on the extent and nature of CP violation. There are no theoretical

predictions for C. We determined the values of βCP and γCP from the distribution of

the angle φ in the KL → e+e−e+e− events.

The angle between the e+e− pairs is calculated as follows:

cos(φ) =
(#p1+ × #p1−)
|#p1+ × #p1−| ·

(#p2+ × #p2−)
|#p2+ × #p2−| (10.3)

sin(φ) = (
(#p1+ × #p1−)
|#p1+ × #p1−| ×

(#p2+ × #p2−)
|#p2+ × #p2−| ) · ẑ

where p1+ and p1− come from one virtual photon and p2+ and p2− come from the other

virtual photon and ẑ is the unit vector in the direction of one of the e+e− pairs in the

center of mass of the kaon. We find the angle by taking the arctan(φ).
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10.1.1 Mee Dependence on Angular Distribution

The decay rate of KL → e+e−e+e− from QED depends on the invariant mass of the

e+e− pairs in addition to the angle φ [24], [25]. We integrate over all Mee to get to this

equation 1.21 above. Therefore, we expect the angle φ to have a dependence on Mee.

For the purposes of this measurement, we choose the e+e− pairing that minimizes

the product of the two e+e− invariant masses. The invariant mass of an internal

conversion to e+e− peaks at zero, so we expect each Mee to be very small. In reality,

both pairings contribute to the matrix element since there are identical particles in the

final state; the pairing we choose is the dominant contribution.

As above, the angle φ is defined to be the angle between the planes of the two

e+e− pairs. In order to have two well-defined planes both opening angles must be large

enough. In other words, we cut on the invariant mass of the two e+e− pairs, Mee1

and Mee2. To place this cut we studied the RMS of the distribution of the generated

and reconstructed difference in φ (in degrees) from MC studies 1 . In figure 10.1 we

plotted the RMS versus the value of the Mee cut (in MeV). We required that Mee1 and

Mee2 both be greater than 8MeV , at which point the detector resolution in φ is around

1.5◦. This cut was made to optimize simultaneously the detector resolution of φ and

the statistical error.

We also checked that we can extract βCP from the Monte Carlo at the generation

level 1, reproducing what we input in for all Mee, namely −0.20. For this study the

Monte Carlo contained the Kroll-Wada formula including the interference term [24] and

included a flat or pointlike form factor. Figure 10.2 shows φ for all generated events.

The top plot fits for βCP using equation 1.21, where we have folded over angles greater

than 90◦ into angles less than 90◦ since we are fitting to a cosine. We obtained the

value of βCP that we expect, -0.20. The bottom plot fits for γCP using equation 1.22

and we obtain zero, as expected.

1Generated means the point in the simulation before an event is traced through our detector; all
information came purely from the physics of the decay. Reconstructed means the event was traced
through the detector and was subjected to our selection criteria.
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Figure 10.1: The RMS from the generated and reconstructed difference in φ (in degrees)
from MC studies versus the value of the Mee cut (in MeV). We place our Mee cut at 8
MeV in the angular distribution analysis.

After testing the fitting procedure, we explored the dependence of φ on Mee. Fig-

ure 10.3 illustrates this dependence. Using KL → e+e−e+e− Monte Carlo we fit the

angular distribution for βCP and γCP in bins of Mee (in MeV) at the generation level.

We expect the MC to give us βCP equal to −0.20 and γCP equal to zero when averaged

over the whole Mee range. The flat line fit of these parameters as a function of Mee

yielded the expected numbers. We also noticed that βCP, which tests the CP state of

the system, approaches zero for small Mee or small opening angles of the e+e− pairs,

where parity starts becoming undefined. Also, γCP is generated flat over the whole Mee

range.

We mentioned above that we required that Mee1 and Mee2 both be greater than

8MeV . We also just showed that the angular distribution depends on Mee. Therefore,

our expectations of the fit parameters βCP and γCP could change. In figure 10.4 we

show φ for generated events with the Mee cut. The top plot fits for βCP and we obtain

a value of -0.25. The bottom plot fits for γCP and again we get a value consistent with
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zero. This MC was generated without radiative corrections and with αeff
K∗ = −0.14, our

measured effective form factor.

10.1.2 Fitting the Acceptance Corrected Angular Distribution

After all cuts discussed in the chapter 6, including the 8MeV Mee cut, 264 KL →
e+e−e+e− events remained that were used to fit for βCP and γCP. The raw angular

distribution is shown in the top plots of figures 10.5 and 10.6, where we show the

folded (0◦ − 90◦) and unfolded (0◦ − 180◦) distributions respectively. The bottom plots

in these figures show the acceptance as a function of φ. Again, the acceptance was

calculated without radiative corrections and with αeff
K∗ = −0.14, our measured effective

form factor.

Next we correct the data for acceptance and fit for βCP and γCP. Figure 10.7 shows

these plots with the fits. From these fits we measure,

βCP = −0.231± 0.091data ± 0.021mc , γCP = −0.093± 0.085data ± 0.019mc.

The dashed line in figure 10.7 shows the CP = +1(K1) prediction and further confirms

that the decay proceeds predominantly through the CP = −1 (K2) state.

To check these 2 and 1 sigma measurements of the βCP and γCP terms respectively,

we calculated the acceptance corrected asymmetry, defined as

Asymmetry =
N+ −N−

N+ +N− . (10.4)

For βCP, N+ is the number of events when cos(2φ) is positive (0◦ ≤ 2φ ≤ 90◦) and N−

is the number of events when cos(2φ) is negative (90◦ ≤ 2φ ≤ 180◦). For γCP, N+ is

the number of events when sin(2φ) is positive (0◦ ≤ 2φ ≤ 180◦) and N− is the number

of events when sin(2φ) is negative (180◦ ≤ 2φ ≤ 360◦). This gives us asymmetries of

Asymmetry(βCP) = (−13.2± 6.3stat)%, (10.5)

Asymmetry(γCP) = (−6.3± 6.3stat)%,

consistent with the measurements above. This is also consistent with the fact that the

asymmetry is related to βCP and γCP by

Asymmetry(βCP) =
N+ −N−

N+ +N− =
2βCP
π

= (−14.6± 5.7)%, (10.6)
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Figure 10.2: The angle φ for all generated events. The top plot fits for βCP using
equation 1.21 and we obtain the value of βCP that we expect, -0.20. The bottom plot
fits for γCP using equation 1.22 and we get zero, as expected.
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and γCP in bins of Mee (in MeV). We expect the MC to give us βCP equal to −0.20
and γCP equal to zero when averaged over the whole Mee range. The flat fit of these
parameters as a function of Mee yields the expected numbers. We also notice that
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opening angles of the e+e− pairs, where parity starts becoming undefined. Also, γCP is
generated flat over the whole Mee range.
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Figure 10.4: We show φ for generated events with the Mee cut of 8 MeV. The top plot
fits for βCP and we obtain a value of -0.25. The bottom plot fits for γCP and again we
get a value consistent with zero.
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Figure 10.5: The top plot shows the angular distribution (folded) for the data, without
acceptance correction. The bottom plot shows the acceptance as a function of the angle
(folded).
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Figure 10.6: The top plot shows the angular distribution from 0◦ − 180◦ for the data,
without acceptance correction. The bottom plot shows the acceptance as a function of
the angle.
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Figure 10.7: The distribution of the angle φ between the planes of the two e+e− pairs. In
the bottom figure, the φ distribution from 90◦−180◦ is folded into 0◦−90◦. We fit these
distributions to equations 1.21 and 1.22 and measure βCP = −0.23± 0.09stat ± 0.02syst
and γCP = −0.09 ± 0.09stat ± 0.02syst. The errors on the fits are from data and MC
statistics. The dashed line shows the CP = +1(K1) prediction and further confirms
that the decay proceeds predominantly through the CP = −1 (K2) state.
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Table 10.1: βCP and γCP with different MC used for acceptance. The MC error is the
uncorrelated error.

MC used for Acceptance βCP γCP
KTeV Rad corr and αK∗ = 0.03 −0.20± 0.10data ± 0.03mc −0.09± 0.09data ± 0.03mc

KTeV Rad corr and no FF −0.22± 0.09data ± 0.03mc −0.10± 0.08data ± 0.03mc
photos and no FF −0.21± 0.09data ± 0.04mc −0.09± 0.08data ± 0.03mc

No rad corr and no FF −0.22± 0.09data ± 0.04mc −0.08± 0.08data ± 0.03mc

Asymmetry(γCP) =
N+ −N−

N+ +N− =
2γCP
π

= (−5.7± 5.7)%.

10.1.3 Systematic Studies for the KL → e+e−e+e− Angular Distribu-

tion Analysis

Various systematic checks were done by splitting the data up into different samples,

correcting for acceptance and then fitting. In figure 10.8 we fit for βCP and γCP for

various sets of data; the winter vs. the summer data; events when one of the four

tracks went down the beam hole at the CsI and when no tracks go down the beam

hole at the CsI; events that came from the east beam vs. the west beam; events that

came from the top of the beam vs. the bottom of the beam. These plots also show how

these parameters vary for different Monte Carlos used in the acceptance correction. For

example, MC with KTeV radiative corrections [83] vs. radiative corrections using the

photos package [82]. For the purposes of systematic studies, we also analyzed a MC

sample generated with out radiative corrections and a MC with no accidental overlays.

All the error bars in figure 10.8 are statistical and all points in this figure are consistent

with each other. This gives us confidence that the systematic uncertainty is not large.

The statistical error band is also shown in this figure. For reference, table 10.1 shows

the fit values for βCP and γCP with different MC used for acceptance, indicating an

overall consistency.

Next, different variables were intentionally scaled thus inducing artificial slopes in

data vs. MC comparisons, which were used to assign the systematic error. Table 10.2

shows how systematic errors were assigned by scaling.
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Figure 10.8: Some systematic checks on βCP and γCP. The statistical error band is also
shown in this figure. This figure shows fits for βCP and γCP when we look at the winter
vs. the summer data; events when one of the four tracks went down the beam hole at
the CsI and when no tracks go down the beam hole at the CsI; events that came from
the east beam vs. the west beam; events that came from the top of the beam vs. the
bottom of the beam. These plots also show how these parameters vary for different
Monte Carlos used in the acceptance correction. All the error bars in this figure are
statistical and all points in this figure are consistent with each other. This gives us
confidence that the systematic uncertainty is not large.
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Table 10.2: Systematic Studies of Angular Distribution

Distrib. orig. slope slope change βCP syst error γCP syst error
% per quantity % per quantity assigned assigned

(arbitrary)
Nominal - - −0.231 - -0.093 -
VTXZ (m) −0.352± 0.388 0.382 -0.243 0.012 -0.105 0.012
TRKP fudge (GeV) 0.102± 0.180 0.334 -0.221 0.005 -0.075 0.010
ENERGCS fudge 0.097+/-0.210 0.295 -0.226 0.004 -0.073 0.014
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Also, the track momenta and the cluster energies were smeared to get an under-

standing of how the uncertainty in the detector (DC, CsI) resolutions affect the fits to

βCP and γCP. Our uncertainty in the track momentum resolution yields a systematic

uncertainty of 0.008 and 0.003 in βCP and γCP respectively. Our uncertainty in the

cluster energy resolution gives a systematic uncertainty of 0.002 and 0.007 in βCP and

γCP respectively.

10.1.4 Results of Angular Distribution Analysis

Summary of Errors of βCP and γCP

The contributions to the errors for βCP and γCP are summarized in table 10.3.

Table 10.3: Table of Errors on Angular Distribution Measurements

Error in βCP in γCP

Statistics 0.093 0.087
Systematic:

Detector Acceptance/Spectrum 0.014 0.021
Detector Resolution 0.008 0.008
Time Dependence - -
Accidentals - -
total internal systematic 0.016 0.022

Results

With the present level of statistics in KL → e+e−e+e− we see no evidence for direct or

indirect CP violation. We measured

βCP = −0.23± 0.09stat ± 0.02syst , γCP = −0.09± 0.09stat ± 0.02syst

in KL → e+e−e+e− , where βCP is an indication of the CP eigenstate and γCP mea-

sures the amount of CP violation in the decay. These results are consistent with the

hypothesis that the KL is the CP = −1 (K2) state. These parameters are insensitive to

the form factor and to the inclusion of final state bremsstrahlung in the Monte Carlo.
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As we discussed in section 10.1.1, the expectation for βCP is -0.25 and the expectation

for γCP is small. We also, for the first time, placed a limit on the value of γCP. The

90% CL limit on |γCP| is < 0.21.

For reference, the previous measurement was based on 27 events and did not include

an explicit Mee cut (1994):

βCP = −0.22± 0.30[38, 19].

We have an order of magnitude more statistics than the previous measurement and

have done a factor of 3 better in the statistical error of βCP. Also, this is the first time

a limit has been placed on γCP.
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Chapter 11

Conclusions

We observed 441KL → e+e−e+e− events with a background of 4.2 events, an increase in

statistics of a factor of 16 compared to the previous most precise measurement [38, 19].

We measured the branching ratio of KL → e+e−e+e− to be

B(KL → e+e−e+e−) =

(3.72± 0.18stat ± 0.10syst ± 0.20norm)× 10−8.

(the last error is in the measurement of the normalization mode B(KL → π0π0
Dπ0

D)

in the PDG). This result assumes a KLγ
∗γ∗ form factor parametrized by Bergström,

Massó, and Singer (BMS) [1]. The theoretical models assuming a form factor show

an increase in the branching ratio compared to a pointlike form factor (see table 1.2

in chapter 1). Given our statistical error in the branching ratio measurement, we

cannot truly discriminate between the theoretical models with and without a form

factor. However, we do observe a non-trivial form factor and believe that the branching

ratio models including a form factor are favored. We conclude that our branching

ratio measurement, our observation of a non-trivial form factor and the theoretical

models including a form factor are consistent. Figure 11.1 shows the experimental

measurements of the B(KL → e+e−e+e− ) over the years. This figure also includes the

various predictions of the B(KL → e+e−e+e− ) as summarized in table 1.2.

We measured the BMS form factor parameter αeff
K∗ = −0.14 ± 0.16stat ± 0.15syst,

which takes into account both the form factor and radiative effects. This is the first

measurement of the form factor parameter αK∗ using the decay KL → e+e−e+e− . Our

result agrees well with the recent measurement of αeff
K∗ = −0.15 ± 0.06stat ± 0.02syst

for the decay KL → e+e−γ [42], also obtained by ignoring radiative corrections. As

mentioned before, the effect of radiative corrections on αK∗ could be different in the two
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Figure 11.1: B(KL → e+e−e+e− ) (×10−8) vs. year. The lines represent the various
predictions of the B(KL → e+e−e+e− ) as summarized in table 1.2. Given our statistical
error in our branching ratio measurement, we cannot truly discriminate between the
theoretical models with and without a form factor.

modes. A comparison of our result and the NA48 result of αeff
K∗ is shown in figure 11.2

(left); we see here that the two results agree well.

Disentangling radiative corrections, we measure αK∗ = 0.03 ± 0.17stat ± 0.18syst

with KL → e+e−e+e− . The PDG world average of the KLγγ
∗ form factor using

KL → e+e−γ is αK∗ = −0.33 ± 0.05. Our result agrees with the PDG average to

within 1.4σ. The PDG average of αK∗ from the KL → e+e−γ analyses and the result

from this analysis are shown in figure 11.3; this figure illustrates the effect of a non-

pointlike form factor on the x distribution. Also recall that αK∗ � 0.3 approximates a
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Figure 11.2: Left: A comparison of our result αeff
K∗ = −0.14± 0.22 for KL → e+e−e+e−

and the NA48 result αeff
K∗ = −0.15 ± 0.06 for KL → e+e−γ [42]. We see here that

the two results agree well. Right: A comparison of our result αK∗ = 0.03 ± 0.25 for
KL → e+e−e+e− , the PDG world average using KL → e+e−γ, αK∗ = −0.33 ± 0.05
[10], the NA48 result using KL → e+e−γ, αK∗ = −0.36 ± 0.06 [42], and the recent
KTeV result using KL → µ+µ−γ, αK∗ = −0.163+0.026

−0.027 [41]. Our result agrees with the
PDG average to within 1.4σ and agrees well with the KL → µ+µ−γ result. The average
of the KL → e+e−γ results and the recent result using KL → µ+µ−γ [41] are different
by 3σ. The reason for this electron-muon mode difference is not understood since the
form factor should be independent of the final state. Also note that radiative effects
are not important in KL → µ+µ−γ but contribute significantly to KL → e+e−γ and
KL → e+e−e+e− .
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Figure 11.3: This figure shows the form factor as a function of x for different results
of αK∗ , pointed to by the arrows. Shown are the PDG world average using the KL →
e+e−γ decay (dominated by the NA48 result αK∗ = −0.36 ± 0.06stat ± 0.02syst [42])
and our result for KL → e+e−e+e− . Compare these to a flat form factor shown. Our
result agrees with the PDG average to within 1.4σ.

flat (or pointlike) form factor using a first order Taylor expansion. Figure 11.2 (right)

shows a comparison of our result and other recent results for αK∗. The average of the

KL → e+e−γ results and the recent result using KL → µ+µ−γ [41] are different by

3σ. The reason for this electron-muon mode difference is not understood since the form

factor should be independent of the final state. We hope in the near future that higher

order terms of the radiative corrections for KL → e+e−e+e− can be simulated so that

the true form factor can be studied further. An improved experimental measurement of

the KLγ
∗γ∗ form factor is essential to understand long distance contributions to other

rare KL decays, in particular KL → µ+µ− [11, 12, 13, 14, 15].
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Using the the distribution of the angle between the planes of the e+e− pairs, we

measured

βCP = −0.23± 0.09stat ± 0.02syst , γCP = −0.09± 0.09stat ± 0.02syst

in KL → e+e−e+e− , where βCP is an indication of the CP eigenstate and γCP measures

the amount of CP violation in the decay. These measurements are based on 264 events

with Mee1 and Mee2 both < 8MeV . We have a tenfold increase in statistics compared

to the previous measurement, improving the statistical error of βCP by a factor of 3.

This is the first measurement of γCP and we placed a 90% CL limit on |γCP| of < 0.21.

The expectation for βCP is -0.25 and for γCP zero, with Mee1 and Mee2 both < 8MeV .

Although this is the largest sample of KL → e+e−e+e− events observed so far, with

the present level of statistics we see no evidence for direct or indirect CP violation.
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Appendix A

Log Likelihood Method of Fitting for the Form Factor

In general, the likelihood is defined as

L(α) =
∏

i

f(xi;α), (A.1)

where the product is over all events, f is the probability density function normalized

to unity, xi are independent variables (phase space) describing the event and α is the

set of unknown parameters. In our case, we have only one parameter, αK∗. So for the

likelihood and normalized probability density function we have:

L(αK∗) =
∏N

i=1 P
i
M (xi;αK∗) P i

a(xi)
[
∫

ps PM (x;αK∗) Pa(x) dx]N
, (A.2)

where the product is over all events (N), PM (x;αK∗) is a probability based on the

matrix element [24] and is a function of all kinematic variables x, and Pa(x) is the de-

tector acceptance probability and is model independent. Notice that the denominator,

integrated over the entire phase space, normalizes the likelihood. The steps leading to

the likelihood function used to fit for the form factor parameter can be found in [49, 87].

The log of the likelihood function we used is:

log(L(αK∗)) =
N∑

i=1

log(wi(αK∗))−N log(T (αK∗))−N log(A(αK∗)) (A.3)

where N is the number of events in our data sample, wi is the weight of the ith event and

comes from the matrix element calculation in the KTeVMC, T is the total integral of the

matrix element over the entire phase space, and A is the total detector acceptance. The

value αK∗ that maximized the likelihood function for our data was our best estimate of

this parameter. The statistical error came from a change of half a unit in the maximum

log likelihood. As a check, we computed the minimum χ2 as well.
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The first term in the log likelihood function above came from the matrix element

calculation used in the KTeV MC for each data event as a function of αK∗ . The second

term, which is the total integral of the matrix element over the entire phase space as

a function of αK∗ , is difficult to calculate analytically. Alternatively, we approximated

this integral using a Monte Carlo integration technique. The third term, which is just

the total acceptance as a function of αK∗ , was obtained by generating different sets of

MC for different values of the parameter. These different MC sets were generated in a

correlated fashion to minimize statistical fluctuations between the sets.
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Appendix B

Fitting for BMS Form Factor Using the χ2 method

As mentioned in chapter 8, we also computed a χ2 between data and MC as a function

of αK∗. We chose the distribution x1 + x2 as shown in figures 8.1 and 8.2. In these

figures the dots represent the data and the histogram represents the Monte Carlo with

f(x) = 1.

A Poisson χ2 was used to fit the data [88]. Again before fitting the data, 10 different

samples the size of the data were analyzed and fit for αK∗ . The same 10 samples with

αK∗ equal to -0.36 were used. Figure B.1 shows the fit value of αK∗ with the statistical

error from the fit for the 10 samples. A fit to a line gives us −0.37 ± 0.06, so we see

that value of αK∗ was put in the MC is extracted by the fit, indicating no bias at

the level of expected statistical error from data. We also know from this figure that

the size of our statistical error of our measurement of αK∗ will be approximately 0.19.

Figure B.2 shows the distribution of the fit value minus the expected value of -0.36.

This distribution is then fit to a Gaussian. The mean of this distribution is 0.0± 0.06.

Both plots show that using a Poisson χ2 reproduces the expected value of -0.36 without

a bias.

The result from our data is shown in figures B.3 and B.4. These figures show the

Poisson χ2 as a function of αK∗ and αeff
K∗ for the KL → e+e−e+e− data. Minimizing

the χ2 gives a value for αK∗ of −0.02 ± 0.20stat and αeff
K∗ of −0.16 ± 0.18stat. These

results are statistically consistent with the ones from the log likelihood analysis. Note

that the statistical error from the log likelihood is slightly smaller than the one from

the χ2, 0.17 versus 0.20 respectively.
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Figure B.1: This plot shows the fit value of αK∗ with the statistical error from the fit
for the 10 samples using χ2. The MC samples contain a value of αK∗ of -0.36 and we
fit −0.37± 0.06 (this is a factor of

√
10 less than our data statistics error using the χ2

technique). This indicates no bias in the technique at the level of expected statistical
error from data.
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Figure B.2: The distribution of the fit value minus the expected value of -0.36 using χ2.
This distribution is then fit to a Gaussian. We see the mean centered about zero and
the sigma (RMS) is an indication of our expected data statistics error due to the χ2

technique. This indicates that there is no bias in the technique at the level of expected
statistical error from data.
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Figure B.3: This plot shows the Poisson χ2 as a function of αK∗ for theKL → e+e−e+e−

data. Radiative corrections are included in the MC. Minimizing the χ2 gives a value
for αK∗ of −0.02 ± 0.20stat, consistent with the value from the log likelihood method
(see figure 8.5).
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Figure B.4: This plot shows the Poisson χ2 as a function of αeff
K∗ for theKL → e+e−e+e−

data. Radiative corrections have been excluded in the MC. Minimizing the χ2 gives
a value for αeff

K∗ of −0.16 ± 0.18stat, consistent with the value from the log likelihood
method (see figure 8.6).
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Appendix C

Fitting for the DIP Form Factor Using the χ2 method

C.1 Fitting for the Linear Term αDIP

The relation between the DIP and BMS parameters is αDIP = −1+2.8 αK∗. Therefore,

our expected measurement of αDIP, neglecting the βDIP term, using our measurement

of αK∗(αeff
K∗) above is -1.4(-1.4), using the χ2 method. Figures C.1 and C.2 show the

fit results from the data using the χ2 method with and without radiative corrections in

the MC. The χ2 method gives αDIP = −1.2 ± 0.7 and αeff
DIP = −1.5 ± 0.7 as expected

from the αK∗ and αeff
K∗ measurements. Comparing the log likelihood method results

in section 8.1.2 we also see that the log likelihood method is a slightly more sensitive

method as we saw before when fitting for the BMS form factor.

C.2 Fitting for the Quadratic Term βDIP

Although we do not expect to be sensitive to the quadratic term βDIP, we studied the

effects of including this term. For simplicity the following studies were done using the

χ2 method and we also included the radiative corrections in the MC. Since the expected

value for βDIP is around +1 we set βDIP = 1.0 in the MC and fit again for αDIP. So, for

βDIP = 1.0, we measure αDIP = −1.04 ± 0.70 and should be compared to βDIP = 0.0,

αDIP = −1.20± 0.66. The ’uncorrelated’ difference is less than 1σ.

To further check our sensitivity to βDIP, both αDIP and βDIP were varied and a χ2

between the data and MC was calculated. The results are shown in table C.1. Note

that the χ2 is only changing when the value of αDIP changes. This is an indication

of our insensitivity to βDIP. As a final test, we fit for βDIP for αDIP = −1.20, our
measurement above. The fit for βDIP is shown in figure C.3. The error on βDIP is on
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Figure C.1: This plot shows the Poisson χ2 as a function of the DIP form factor
parameter αDIP (with βDIP = 0.0) for the KL → e+e−e+e− data. Minimizing the χ2

gives a value for αDIP of −1.2±0.7stat, consistent with the value from the log likelihood
(see figure 8.7).
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Figure C.2: This plot shows the Poisson χ2 as a function of the DIP form factor
parameter αeff

DIP (with βDIP = 0.0) for the KL → e+e−e+e− data. Minimizing the χ2

gives a value for αeff
DIP of −1.5±0.7stat, consistent with the value from the log likelihood

(see figure 8.8).
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the order of 35.0 on a parameter whose expectation is around 1.4. This without a doubt

shows that KL → e+e−e+e− is not sensitive to the DIP parameter βDIP. In fact, to

measure βDIP to ±1.0 we need about 1200 times more events since the error on 400

events is ±35.0. This means that to get a sensitivity of ±1 on βDIP we need around

500,000 KL → e+e−e+e− events.
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Table C.1: Table of DIP Form Factor Parameters vs. χ2

αDIP βDIP χ2 per 3 dof
-5.0 5.0 38.04
-5.0 1.0 37.35
-5.0 -3.0 37.05
-1.0 5.0 6.04
-1.0 1.0 6.04
-1.0 -3.0 6.37
3.0 5.0 78.90
3.0 1.0 78.90
3.0 -3.0 79.61
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Figure C.3: This plot shows the Poisson χ2 as a function of the DIP form factor
parameter βDIP (with αDIP = 1.20) for the KL → e+e−e+e− data. Minimizing the χ2

gives a value for βDIP of 11.9 ± 37.8stat. The expectation is around 1.4. This shows
that KL → e+e−e+e− is insensitive to the parameter βDIP, a second order term.
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Appendix D

Fitting for a Linear Form Factor Using the χ2 method

A first order Taylor expansion of the KL → e+e−e+e− form factors yields a generic

linear form factor of the form (1+αTaylor(x1+x2)) as described in chapter 1. We obtain

the approximate relations αTaylor ≈ 0.42− 1.2αK∗ ≈ −αDIP/2.4. Our expectations and

measurements of αTaylor are summarized in tables D.1 and D.2 respectively. We see

that our measurements of αTaylor and αeff
Taylor agree with the expected values from our

BMS and DIP form factor measurements.

Table D.1: Expected values of αTaylor from measurements of αK∗ and αDIP using the
χ2 method.

Expected αTaylor and αeff
Taylor

αK∗ 0.44
αDIP 0.50
αeff

K∗ 0.61
αeff
DIP 0.62

Table D.2: Measurements of αTaylor and αeff
Taylor using the χ2 method. These measure-

ments agree with the expected values from our BMS and DIP form factor measurements
seen in table D.1.

χ2

αTaylor 0.51± 0.30
αeff
Taylor 0.60± 0.34
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